...
首页> 外文期刊>quantitative imaging in medicine and surgery >MRI classification using semantic random forest with auto-context model
【24h】

MRI classification using semantic random forest with auto-context model

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Background: It is challenging to differentiate air and bone on MR images of conventional sequences due to their low contrast. We propose to combine semantic feature extraction under auto-context manner into random forest to improve reasonability of the MRI segmentation for MRI-based radiotherapy treatment planning or PET attention correction. Methods: We applied a semantic classification random forest (SCRF) method which consists of a training stage and a segmentation stage. In the training stage, patch-based MRI features were extracted from registered MRI-CT training images, and the most informative elements were selected via feature selection to train an initial random forest. The rest sequence of random forests was trained by a combination of MRI feature and semantic feature under an auto-context manner. During segmentation, the MRI patches were first fed into these random forests to derive patch-based segmentation. By using patch fusion, the final end-to-end segmentation was obtained. Results: The Dice similarity coefficient (DSC) for air, bone and soft tissue classes obtained via proposed method were 0.976±0.007, 0.819±0.050 and 0.932±0.031, compared to 0.916±0.099, 0.673±0.151 and 0.830±0.083 with random forest (RF), and 0.942±0.086, 0.791±0.046 and 0.917±0.033 with U-Net. SCRF also outperformed the competing methods in sensitivity and specificity for all three structure types. Conclusions: The proposed method accurately segmented bone, air and soft tissue. It is promising in facilitating advanced MR application in diagnosis and therapy.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号