...
首页> 外文期刊>archives of razi institute >Bioinformatics analysis of upstream region and protein structure of fungal phytase gene
【24h】

Bioinformatics analysis of upstream region and protein structure of fungal phytase gene

机译:

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Copyright © 2018 by.Phytase increases the bioavailability of phytate phosphorus in seed-based animal feeds and reduces the phosphorus pollution of animal waste. Since most animal feeds for pellets are heated up to 65-80 °C, the production of a thermostable structure for phytase can be useful. In this study, we sought to perform bioinformatics analysis of the upstream region and protein structure of fungal phytase to improve its expression and thermostability properties. We used bioinformatics methods such as similarity search, multiple alignment, statistical analysis of physicochemical properties of amino acids, pattern recognition, and protein modeling to find out the effective factors in heat resistance of phytase. Change in Gibbs free energy (∆G) of the best pattern promoter resulting from the interaction between RNA polymerase and the promoter sequences of modified genes of phytase was equal to -9 kcalmol-1, which is lower compared to other interactions. The evaluation of the three-dimensional structure of new phytases showed that amino acid substitutions aimed at improving thermostability did not change the form and structure of the protein. The results of Prochek, Whatcheck, and ERRAT for structural analysis and verification were 84, 72, and 70, respectively, that were satisfactory.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号