...
首页> 外文期刊>Journal of Colloid and Interface Science >In-situ formed Cyclodextrin-functionalized graphene oxide/poly (N-isopropylacrylamide) nanocomposite hydrogel as an recovery adsorbent for phenol and microfluidic valve
【24h】

In-situ formed Cyclodextrin-functionalized graphene oxide/poly (N-isopropylacrylamide) nanocomposite hydrogel as an recovery adsorbent for phenol and microfluidic valve

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Phenolic compounds are important industrial raw materials for various industrial applications, but phenol-containing wastewater creates significant environmental and biological hazards. To address these issues, a three-dimensional network graphene oxide-cyanoethyltriethoxysilane-beta-cyclodextrin/poly (N-isopropylacrylamide) (GO-CTES-beta-CD/PNIPAM) nanocomposite hydrogel as a phenol recovery adsorbent is prepared herein by in-situ polymerization. Double graft modification on the graphene oxide (GO) via the silane coupling agent 2-cyanoethyltriethoxysilane (CTES) and single (6-tetraethylenepentamine-6-deoxy)-beta-cyclodextrin (NH-beta-CD) compensated the loss of the active sites on both GO and N-isopropylacrylamide (NIPAM), and the hydrogel shows excellent mechanical properties as the chemical crosslinking and physical entanglement of the two components. Consequently, the composite hydrogel achieved an adsorption capacity of 131.64 mg.g(1) for the common environmental toxin 4-NP. After five repeated adsorption-desorption cycles, the hydrogel retained 74 of the initial 4-NP removal ratio. The adsorption results followed pseudo-first-order kinetics, corresponding to heterogeneous multilayer adsorption, which was regulated by a combination of surface adsorption and intra-particle diffusion mechanisms. In general, the nanocomposite hydrogel shows promising application in the field of recycling phenols from wastewater. Also, high photothermal conversion and temperature-sensitive properties are also demonstrated, which makes the hydrogel possessing great potential to be applied in smart microvalves. (C) 2021 Elsevier Inc. All rights reserved.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号