...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >No iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: Experimental evidence and implications for planetary differentiation and accretion
【24h】

No iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: Experimental evidence and implications for planetary differentiation and accretion

机译:在2000°C和7.7 GPa的熔融合金和硅酸盐熔体之间没有铁同位素分馏:实验证据及其对行星分化和吸积的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Whether core-mantle differentiation of terrestrial planets fractionates iron isotope is currently a debated issue. Melting experiments corresponding to the conditions inferred for core differentiation in an early silicate magma ocean were performed at 1750 and 2000 °C, and from 1 to 7.7 GPa to address this question. The starting mixtures correspond to a devolatilized CI chondrite composition and oxygen fugacity conditions were ~ 2 log units below the iron-wüstite buffer. Scanning electron microscopy observations, electron microprobe chemical analyses and plasma source mass spectrometric isotope analyses of the experimental charges show that chemical and iron isotope equilibrium was reached at 2000 °C within 100 s. No Fe isotope fractionation was found between the Fe-Ni alloy and the ultramafic silicate melt at this temperature. This result holds within the 2-7.7 GPa pressure range and is likely to remain valid at higher pressures and temperatures. The addition of sulfur to the system does not alter this conclusion. The compilation of all experiments conducted at 2000 °C yields Δ~(57)Fe_(metal-silicate glass) = 0.047 ± 0.063‰. Our results suggest that significant iron isotope fractionation is unlikely during equilibration of molten core-forming materials in a deep magma ocean. This process therefore cannot explain the heavier Fe isotope composition of the Moon relative to the Earth, itself heavier than Mars, Vesta and chondrite parent bodies.
机译:目前,地球行星的核心-地幔分化是否会分离铁同位素。为解决这个问题,在1750和2000°C以及1至7.7 GPa的温度下进行了与推断为早期硅酸盐岩浆海洋的岩心分化条件相对应的熔化实验。起始混合物对应于脱挥发分的CI球粒陨石成分,氧逸度条件低于铁-白钨矿缓冲液约2个对数单位。扫描电镜观察,电子微探针化学分析和等离子体源质谱对实验电荷的同位素分析表明,在2000℃内100 s内达到了化学和铁同位素平衡。在此温度下,在Fe-Ni合金和超镁硅酸盐熔体之间未发现Fe同位素分馏。该结果保持在2-7.7 GPa压力范围内,并且可能在较高的压力和温度下仍然有效。向系统中添加硫不会改变这一结论。在2000°C进行的所有实验的汇编得出Δ〜(57)Fe_(金属硅酸盐玻璃)= 0.047±0.063‰。我们的研究结果表明,在深部岩浆海中熔融成核材料的平衡过程中,铁同位素分馏的可能性不大。因此,这一过程无法解释月球相对于地球的重于铁同位素组成,其本身比火星,维斯塔和球粒陨石母体重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号