...
【24h】

On convection in a volatile-saturated magma

机译:在挥发饱和岩浆中的对流

获取原文
获取原文并翻译 | 示例
           

摘要

When a saturated basaltic magma cools and crystallises in a shallow magma reservoir, gas bubbles may be exsolved from solution, thereby influencing the density, convective mixing and pressure evolution of the melt. In wet basaltic magmas, saturated with H_2O, the production of small bubbles may dominate the density evolution of the mixture, causing a gradual decrease of the bulk density with cooling. Cool upper boundaries of the chamber may therefore become stable to convection while vigorous convection way develop as the bubbly-mixture rises from cold lower boundaries. The intensity of such bubble-driven convection may be an order of magnitude greater than purely thermal or compositional convection which arises in unsaturated melt. New laboratory experiments of such bubble-driven convection suggest that after a transient, an equilibrium bubble concentration is attained, and subsequently bubble-magma separation leads to build up of a layer of bubbles above the well-mixed bubble-laden melt [1]. These results have some important implications for mixing when a volatile rich mafic magma is intruded below an evolved, less dense body of silicic magma.f When the mafic magma becomes volatile saturated, then owing to cooling at its upper boundary, the bulk density in the upper boundary layer of the mafic magma will decrease owing to the exsolution of gas. If the density falls below that of the overlying silicic magma, then small plumes of buoyant bubble-rich mafic magma may rise from the boundary into the upper silicic layer. In addition, on saturation of the mafic magma, cooling at the lower boundary will begin to drive convection of bubble-rich melt. The mafic magma may eventually reach an equilibrium bubble concentration and, subsequently, the bubbles produced at the base of the layer will be supplied to the interface between the silicic and mafic layers. Large scale overturn of the mafic and silicic magmas can therefore only occur if, at the equilibrium bubble concentration, the bulk density of the bubbly mafic magma is smaller than that of the overlying magma; otherwise mixing continues through small plumes of vesicular mafic melt rising from the upper boundary layer. For basaltic magma in which CO_2 is the dominant volatile phase, the generation of bubbles does not typically dominate the density evolution and the convective flows are similar to those in an unsaturated melt.
机译:当饱和的玄武岩浆在浅岩浆储层中冷却并结晶时,气泡可能会从溶液中溶解出来,从而影响熔体的密度,对流混合和压力演化。在充满H_2O的湿玄武岩浆中,小气泡的产生可能会主导混合物的密度演化,从而随着冷却逐渐使堆积密度逐渐降低。因此,当气泡混合物从冷的下部边界上升时,腔室的冷的上部边界可能变得对流稳定,同时发展出强劲的对流方式。这种气泡驱动的对流的强度可以比不饱和熔体中产生的纯粹的热对流或成分对流大一个数量级。这种气泡驱动对流的新实验室实验表明,在瞬变之后,气泡达到平衡浓度,随后气泡-岩浆分离导致在充分混合的充满气泡的熔体上方形成一层气泡[1]。这些结果对于将挥发性富集的镁铁质岩浆侵入已演化,密度较小的硅质岩浆体下方时的混合具有重要意义。f当铁镁质岩浆变为挥发性饱和状态时,由于其上边界的冷却,岩浆中的堆积密度增大。铁镁质岩浆的上边界层将由于气体的析出而减少。如果密度降到上覆硅质岩浆的密度以下,则浮力丰富的镁铁质岩浆的小羽状物可能会从边界升至上层硅质层。另外,在镁铁质岩浆饱和时,下边界的冷却将开始驱动富含气泡的熔体的对流。镁铁质岩浆最终可能达到平衡的气泡浓度,随后,在该层底部产生的气泡将被供应到硅质和镁铁质层之间的界面。因此,仅当在平衡气泡浓度下,起泡的铁镁质岩浆的堆积密度小于上覆岩浆的堆积密度时,才会发生镁铁质和硅质岩浆的大规模倾覆。否则,混合会通过从上边界层升起的小束水泡基性熔体继续进行。对于其中CO_2为主要挥发性相的玄武岩浆,气泡的产生通常不支配密度演化,对流与不饱和熔体中的对流相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号