...
首页> 外文期刊>global change biology >Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect‐parasitoid interactions
【24h】

Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect‐parasitoid interactions

机译:Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect‐parasitoid interactions

获取原文
           

摘要

AbstractThis study was conducted to examine the effects of CO2‐mediated changes in tree chemistry on the performance of the gypsy moth ((Lymantria disparL.) and the parasitoldCotesia melanoscela(Ratz.). We used carbon‐nutrient balance theory to develop hypotheses regarding changes in tree chemistry and the performance of both insects under elevated CO2. As predicted, levels of foliar nitrogen declined and concentrations of carbon‐based compounds (e.g. starch and phenolics) increased under elevated CO2. Gypsy moth performance (e.g. growth, development) was altered by CO2‐mediated changes in foliar chemistry, but the magnitude was small and varied across tree species. Larvae feeding on high CO2aspen exhibited the largest reduction in performance, relative to larvae feeding on birch, oak, or maple. Parasitism byC. melanoscelasignificantly prolonged gypsy moth development and reduced growth rates. Overall, the effect of parasitism on gypsy moth performance did not differ between CO2treatments. Altered gypsy moth performance on high CO2foliage in turn affected parasitoid performance, but the response was variable: parasitoid mortality increased and adult female size declined slightly under high CO2, while development time and adult male size were unaffected. Our results suggest that CO2‐induced changes in plant chemistry were buffered to the extent that effects on third trophic level interactions were weak to non‐existent for the system examined in

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号