...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >Far-Field On-Chip Antennas Monolithically Integrated in a Wireless-Powered 5.8-GHz Downlink/UWB Uplink RFID Tag in 0.18-formula formulatype='inline' img src='/images/tex/508.gif' alt='mu{hbox {m}}' /formula Standard CMOS
【24h】

Far-Field On-Chip Antennas Monolithically Integrated in a Wireless-Powered 5.8-GHz Downlink/UWB Uplink RFID Tag in 0.18-formula formulatype='inline' img src='/images/tex/508.gif' alt='mu{hbox {m}}' /formula Standard CMOS

机译:Far-Field On-Chip Antennas Monolithically Integrated in a Wireless-Powered 5.8-GHz Downlink/UWB Uplink RFID Tag in 0.18-formula formulatype="inline" img src="/images/tex/508.gif" alt="mu{hbox {m}}" /formula Standard CMOS

获取原文
获取原文并翻译 | 示例
           

摘要

This paper discusses two antennas monolithically integrated on-chip to be used respectively for wireless powering and UWB transmission of a tag designed and fabricated in 0.18-$mu{hbox {m}}$ CMOS technology. A multiturn loop-dipole structure with inductive and resistive stubs is chosen for both antennas. Using these on-chip antennas, the chip employs asymmetric communication links: at downlink, the tag captures the required supply wirelessly from the received RF signal transmitted by a reader and, for the uplink, ultra-wideband impulse-radio (UWB-IR), in the 3.1–10.6-GHz band, is employed instead of backscattering to achieve extremely low power and a high data rate up to 1 Mb/s. At downlink with the on-chip power-scavenging antenna and power-management unit circuitry properly designed, 7.5-cm powering distance has been achieved, which is a huge improvement in terms of operation distance compared with other reported tags with on-chip antenna. Also, 7-cm operating distance is achieved with the implemented on-chip UWB antenna. The tag can be powered up at all the three ISM bands of 915 MHz and 2.45 GHz, with off-chip antennas, and 5.8 GHz with the integrated on-chip antenna. The tag receives its clock and the commands wirelessly through the modulated RF powering-up signal. Measurement results show that the tag can operate up to 1 Mb/s data rate with a minimum input power of $-hbox{19.41 dBm}$ at 915-MHz band, corresponding to 15.7 m of operation range with an off-chip 0-dB gain antenna. This is a great improvement compared with conventional passive RFIDs in term of data rate and operation distance. The power consumption of the chip is measured to be just 16.6 $mu hbox{W}$ at the clock frequency of 10 MHz at 1.2-V supply. In addition, in this paper, for the firs--t time, the radiation pattern of an on-chip antenna at such a frequency is measured. The measurement shows that the antenna has an almost omnidirectional radiation pattern so that the chip's performance is less direction-dependent.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号