首页> 外文期刊>Molecular Endocrinology >LH-induced neuregulin 1 (NRG1) Type III transcripts control granulosa cell differentiation and oocyte maturation.
【24h】

LH-induced neuregulin 1 (NRG1) Type III transcripts control granulosa cell differentiation and oocyte maturation.

机译:LH-induced neuregulin 1 (NRG1) Type III transcripts control granulosa cell differentiation and oocyte maturation.

获取原文
获取原文并翻译 | 示例
           

摘要

Epidermal growth factor (EGF)-like factors amphiregulin (AREG), betacellulin, and epiregulin are induced by LH and activate the EGF receptor (ERBB1)/ERK1/2 pathway in granulosa cells and cumulus cells of preovulatory follicles to impact ovulation. However, the expression and roles of other ERBB family members and their ligands have not been explored in detail. Herein, we document that two transcripts of the neuregulin (Nrg1) gene are expressed in granulosa cells, and that the type III Nrg1 is induced during ovulation in an ERK1/2 and C/EBPbeta-dependent manner. Western blotting shows that intact (75 kDa) and secreted (45 kDa) forms of neuregulin 1 (NRG1) are present in the ovary. NRG1 likely binds to ERBB3/ERBB2 complexes that are expressed in granulosa cells and cumulus cells. In cultured granulosa cells, NRG1 selectively stimulates the phosphorylation of AKT/PKB compared to ERK1/2. However, when granulosa cells were cultured with NRG1 and AREG, the phosphorylation of ERK1/2 was markedly enhanced as compared with that by AREG alone. Cotreatment with NRG1 and AREG also increased progesterone production. When cumulus-oocyte complexes (COCs) were cultured with both NRG1 and AREG, the matured oocytes exhibited significantly higher developmental competence as compared with that of oocytes cultured with AREG alone. Collectively, these results document that the expression of type III NRG1 is induced in granulosa cells during ovulation and that NRG1 enhances AREG-induced ERK1/2 phosphorylation in both granulosa cells and cumulus cells. The NRG1 pathway has two roles: one is to enhance AREG-induced progesterone production in granulosa cells, and the other is to regulate oocyte maturation by a cumulus cell-dependent mechanism.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号