...
首页> 外文期刊>Environmental Science & Technology: ES&T >Oxidation of lodide and hypoiodous acid in the disinfection of natural waters
【24h】

Oxidation of lodide and hypoiodous acid in the disinfection of natural waters

机译:Oxidation of lodide and hypoiodous acid in the disinfection of natural waters

获取原文
获取原文并翻译 | 示例
           

摘要

In aqueous oxidative processes with ozone (O{sub}3), chlorine, or chloramine, naturally occurring iodide (I{sup}-) can easily be oxidized to hypoiodous acid (HOI) which can react with natural organic matter (NOM) or be further oxidized to iodate(IO{sub}3{sup}-). Such processes can be of importance for the geochemistry of iodine and for the fate of iodine in industrial processes (drinking water treatment, aquacultures). Whereas IO{sub}3{sup}- is the desired sink for iodine in drinking waters,iodoorganic compounds (especially iodoform, CH{sub}3) are problematic due to their taste and odor. To assess the sink for iodine during oxidation of natural waters, we determined the kinetics of several oxidation reactions of HOI. Ozone, chlorine, andchloramine have been tested as potential oxidants. Ozone oxidized both HOI and hypoiodite (OI{sup}-) (k{sub}(O3+HOI) = 3.6×10{sup}4 M{sup}-1 S{sup}-1; k{sub}(O3+HO{sup}-) =1.6×10{sup}6 M{sup}-1 S{sup}-1) in a fast reaction. Chlorine species oxidized HOI by a combination of second- and third-order reactions (k'{sub}(HOCl+HOI) = 8.2 M{sup}-1 S{sup}-1; k''{sub}(HOCl+HOI)=8.3×10{sup}4 M{sup}-1 S{sup}-1; k{sub}(OCl+HOI)= 52 M{sup}-1 S{sup}-1. Monochloramine did not further oxidize HOI. The probability of the formation of odoorganic compounds during drinking water disinfection therefore increases in the order O{sub}3

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号