...
首页> 外文期刊>ACS nano >Protein-Delivering Nanocomplexes with Fenton Reaction-Triggered Cargo Release to Boost Cancer Immunotherapy
【24h】

Protein-Delivering Nanocomplexes with Fenton Reaction-Triggered Cargo Release to Boost Cancer Immunotherapy

机译:Protein-Delivering Nanocomplexes with Fenton Reaction-Triggered Cargo Release to Boost Cancer Immunotherapy

获取原文
获取原文并翻译 | 示例
           

摘要

Immunotherapeutic efficacy of tumors based on immune checkpoint blockade (ICB) therapy is frequently limited by an immunosuppressive tumor microenvironment and cross-reactivity with normal tissues. Herein, we develop reactive oxygen species (ROS)-responsive nanocomplexes with the function of ROS production for delivery and triggered release of anti-mouse programmed death ligand 1 antibody (αPDL1) and glucose oxidase (GOx). GOx and αPDL1 were complexed with oligomerized (−)-epigallocatechin-3-O-gallate (OEGCG), which was followed by chelation with Fe3+ and coverage of the ROS-responsive block copolymer, POEGMA-b-PTKDOPA, consisting of poly­(oligo­(ethylene glycol)­methacrylate) (POEGMA) and the block with thioketal bond-linked dopamine moieties (PTKDOPA) as the side chains. After intravenous injection, the nanocomplexes show prolonged circulation in the bloodstream with a half-life of 8.72 h and efficient tumor accumulation. At the tumor sites, GOx inside the nanocomplexes can produce H2O2 via oxidation of glucose for Fenton reaction to generate hydroxyl radicals (•OH) which further trigger the release of the protein cargos through ROS-responsive cleavage of thioketal bonds. The released GOx improves the production efficiency of •OH to kill cancer cells for release of tumor-associated antigens via chemodynamic therapy (CDT). The enhanced immunogenic cell death (ICD) can activate the immunosuppressive tumor microenvironment and improve the immunotherapy effect of the released αPDL1, which significantly suppresses primary and metastatic tumors. Thus, the nanocomplexes with Fenton reaction-triggered protein release show great potentials to improve the immunotherapeutic efficacy of ICB via combination with CDT.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号