首页> 外文期刊>ACS nano >Fourier-Engineered Plasmonic Lattice Resonances
【24h】

Fourier-Engineered Plasmonic Lattice Resonances

机译:傅里叶工程等离子体晶格共振

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Resonances in optical systems are useful for many applications, such as frequency comb generation, optical filtering, and biosensing. However, many of these applications are difiicult to implement in optical metasurfaces because traditional approaches for designing multiresonant nanostructures require significant computational and fabrication efforts. To address this challenge, we introduce the concept of Fourier lattice resonances (FLRs) in which multiple desired resonances can be chosen a priori and used to dictate the metasurface design. Because each resonance is supported by a distinct surface lattice mode, each can have a high quality factor. Here, we experimentally demonstrate several metasurfaces with flexibly placed resonances (e.g., at 1310 and 1550 nm) and Q-factors as high as 800 in a plasmonic platform. This flexible procedure requires only the computation of a single Fourier transform for its design, and is based on standard lithographic fabrication methods, allowing one to design and fabricate a metasurface to fit any specific, optical-cavity-based application. This work represents a step toward the complete control over the transmission spectrum of a metasurface.
机译:光学系统中的共振可用于许多应用,例如频梳生成、光学滤波和生物传感。然而,其中许多应用很难在光学超表面中实现,因为设计多共振纳米结构的传统方法需要大量的计算和制造工作。为了应对这一挑战,我们引入了傅里叶晶格共振(FLR)的概念,其中可以先验地选择多个所需的共振,并用于决定超表面设计。由于每个共振都由不同的表面晶格模式支持,因此每个共振都可以具有很高的质量因数。在这里,我们通过实验演示了几种超表面,这些超表面具有灵活放置的共振(例如,在1310和1550 nm处)和等离子体平台中高达800的Q因子。这种灵活的过程只需要计算单个傅里叶变换即可进行设计,并且基于标准的光刻制造方法,允许设计和制造超表面以适应任何特定的、基于光学腔的应用。这项工作代表了朝着完全控制超表面透射光谱迈出的一步。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号