...
首页> 外文期刊>Journal of hydrometeorology >Assessment on the Water Vapor Flux from Atmospheric Reanalysis Data in the South China Sea on 2019 Summer
【24h】

Assessment on the Water Vapor Flux from Atmospheric Reanalysis Data in the South China Sea on 2019 Summer

机译:Assessment on the Water Vapor Flux from Atmospheric Reanalysis Data in the South China Sea on 2019 Summer

获取原文
获取原文并翻译 | 示例
           

摘要

This paper assesses the water vapor flux performance of three reanalysis datasets (ERA5, JRA55, NCEP-2) on the South China Sea. The radiosonde data were from the South China Sea Scientific Expedition organized by Sun Yat-sen University in the 2019 summer (SCSEX2019). The comparison shows that all reanalyses underestimate the temperature and specific humidity under 500 hPa. As for the wind profile, the most significant difference appeared at 1800 UTC when there was no conventional radiosonde observation around the experiment area. As for the water vapor flux, ERA5 seems to give the best zonal flux but the worst meridional one. A deeper analysis shows that the bias in the wind mainly caused the difference in water vapor flux from ERA5. As for JRA55 and NCEP-2, the humidity and wind field bias coincidentally canceled each other, inducing a much smaller bias, especially in meridional water vapor flux. Therefore, to get a more realistic water vapor flux, a correction in the wind profile was most needed for ERA5. In contrast, the simultaneous improvement on both wind and humidity fields might produce a better water vapor flux for JRA55 and NCEP-2. Significance StatementThis paper mainly aims to assess three atmospheric reanalyses from the viewpoint of the water vapor flux over the South China Sea during the monsoon period. The observation data contain more than 120 radiosonde profiles. Our work has given an objective comparison among the reanalyses and observations. We also tried to explain the bias in the water vapor flux over the ocean from the reanalyses. The results of our work might help understand the monsoon precipitation given by atmospheric reanalyses or regional climate models and enlighten the development of atmospheric assimilation products.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号