...
首页> 外文期刊>ACS nano >Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect
【24h】

Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect

机译:Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect

获取原文
获取原文并翻译 | 示例
           

摘要

The ability to meet higher effluent quality requirements and the reduction of energy consumption are the biggest challenges in wastewater treatment worldwide. A large proportion of the energy generated during wastewater treatment processes is neglected and lost in traditional wastewater treatment plants. As a type of energy harvesting system, triboelectric nanogenerators (TENGs) can extensively harvest the microscale energies generated from wastewater treatment procedures and auxiliary devices. This harvested energy can be utilized to improve the removal efficiency of pollutants through photo/electric catalysis, which has considerable potential application value in wastewater treatment plants. This paper gives an overall review of the generated potential energies (e.g., water wave energy, wind energy, and acoustic energy) that can be harvested at various stages of the wastewater treatment process and introduces the application of TENG devices for the collection of these neglected energies during wastewater treatment. Furthermore, the mechanisms and catalytic performances of TENGs coupled with photo/electric catalysis (e.g., electrocatalysis, photoelectric catalysis) are discussed to realize higher pollutant removal efficiencies and lower energy consumption. Then, a thorough, detailed investigation of TENG devices, electrode materials, and their coupled applications is summarized. Finally, the intimate coupling of self-powered photoelectric catalysis and biodegradation is proposed to further improve removal efficiencies in wastewater treatment. This concept is conducive to improving knowledge about the underlying mechanisms and extending applications of TENGs in wastewater treatment to better solve the problems of energy demand in the future.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号