...
首页> 外文期刊>ACS nano >One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries
【24h】

One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries

机译:One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries

获取原文
获取原文并翻译 | 示例
           

摘要

With the advantages of a high theoretical capacity, proper working voltage, and abundant reserves, silicon (Si) is regarded as a promising anode for lithium-ion batteries. However, huge volume expansion and low electronic conductivity impede the commercialization of Si anodes. We devised a one-step, vacuum-assisted reactive carbon coating technique to controllably produce micrometer-sized nanoporous silicon confined by homogeneous N-doped carbon nanosheet frameworks (NPSi@NCNFs), achieved by the solid state reaction of a commercial bulk precursor and the subsequent evaporation of byproducts. The graphitization degree, C and N contents of the carbon shell, as well as the porosity of Si can be regulated by adjusting the synthetic conditions. A rational structure can mitigate volume expansion to maintain structural integrity, enhance electronic conductivity to facilitate charge transport, and serve as a protected layer to stabilize the solid electrolyte interphase. The NPSi@NCNF anode enables a stable cycling performance with 95.68 capacity retention for 4000 cycles at 5 A g(-1). Furthermore, a flexible 2D/3D architecture is designed by conjugating NPSi@NCNFs with MXene. Lithiophilic NPSi@NCNFs homogenize Li nucleation and growth, evidenced by structural evolutions of MXene@NPSi@NCNF deposited Li. The application potential of NPSi@NCNFs and MXene@NPSi@NCNFs is estimated via assembling full cells with LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Mn1.5O4 cathodes. This work offers a method for the rational design of alloy-based materials for advanced energy storage.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号