...
首页> 外文期刊>ACS nano >Effects of Transition Metals on Metal–Octaaminophthalocyanine-Based 2D Metal–Organic Frameworks
【24h】

Effects of Transition Metals on Metal–Octaaminophthalocyanine-Based 2D Metal–Organic Frameworks

机译:Effects of Transition Metals on Metal–Octaaminophthalocyanine-Based 2D Metal–Organic Frameworks

获取原文
获取原文并翻译 | 示例
           

摘要

Metal–octaaminophthalocyanine (MOAPc)-based 2D conductive metal–organic frameworks (cMOFs) have shown great potential in several applications, including sensing, energy storage, and electrocatalysis, due to their bimetallic characteristics. Here, we report a detailed metal substitution study on a family of isostructural cMOFs with Co2+, Ni2+, and Cu2+ as both the metal nodes and the metal centers in the MOAPc ligands. We observed that different metal nodes had variations in the reaction kinetics, particle sizes, and crystallinities. Importantly, the electronic structure and conductivity were found to be dependent on both types of metal sites in the 2D cMOFs. Ni-NiOAPc was found to be the most conductive one among the nine possible combinations with a conductivity of 54 ± 4.8 mS/cm. DFT calculations revealed that monolayer Ni-NiOAPc has neither the smallest bandgap nor the highest charge carrier mobility. Hence its highest conductivity stems from its high crystallinity. Collectively, these results provide structure property relationships for MOAPc-based cMOFs with amino coordination units.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号