...
首页> 外文期刊>Nuclear fusion >Effect of cold work deformationon irradiation hardening of vanadium alloys
【24h】

Effect of cold work deformationon irradiation hardening of vanadium alloys

机译:Effect of cold work deformationon irradiation hardening of vanadium alloys

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Vanadium alloys are regarded as promising candidate structural materials for the advanced blanket concept in fusion reactors due to their low activation, good high-temperature strength and, in particular, their compatibility with liquid lithium. In the present work, six kinds of V–5Cr–5Ti alloys under heavy cold work with deformation amounts of 40, 60 and 80, and/or subsequent annealing were investigated. Irradiation damage of 0.1, 0.3 and 0.5 dpa was introduced in both specimens using 352.8 MeV Fe ions at 100 °C. Electron backscattered diffraction and transmission electron microscopy (TEM) were used to investigate pre-irradiation microstructures such as grains, dislocations, precipitates and bubbles. X-ray diffraction was used to evaluate the pre-existing dislocation density and TEM was used to image the irradiation defects. The change in hardness was evaluated using micro-hardness tests. Before irradiation, the hardness increased with the increasing deformation amount but decreased after subsequent annealing. Dislocation cells turning into sub-grains with low-angle boundaries were observed, while the deformation amount reached 80 in cold-worked specimens. After irradiation, hardening was observed in all specimens and at all irradiation doses, and a power-law relation was observed in dose-dependent hardening. The effect of the initial microstructure on irradiation hardening was discussed in terms of the sink strength while ignoring grains and precipitates due to their large size. Pre-existing bubbles could effectively reduce irradiation hardening compared with previous results. Meanwhile, with the increasing sink strength of dislocations, hardening decreased in a different manner in cold-worked and annealed specimens. The irradiation defects in some specimens were investigated to clarify the inherent mechanism in the relationship between the initial microstructures and irradiation hardening.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号