...
首页> 外文期刊>Tunnelling and underground space technology >Using field data and operational constraints to maximize hard rock TBM penetration and advance rates
【24h】

Using field data and operational constraints to maximize hard rock TBM penetration and advance rates

机译:Using field data and operational constraints to maximize hard rock TBM penetration and advance rates

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the influence of rock type and uniaxial compressive strength on the cutter penetration is inves-tigated to provide a basic guideline for the optimum field cutter spacing. The successfully utilized cutterhead layout designs are also studied in various rock types and different categories of tunnel sizes for projects with relatively high performance. The results of the conducted analyses show that the maximum cutter penetration in uniaxial compressive strength values below 50 and above 150 MPa is achieved when the cutter spacing is close to 90 and below 80 mm respectively. The study on the layout design characteristics of the cutterhead shows the evenly distributed scheme is more used with success even in softer rocks (when the rock mass condition is good). In softer rocks, the extension of the openings may have to be well over 50 of the cutterhead radius to maximize its performance. It is also found that the linear speed of the cutters has a direct correlation with two major parameters of normal force index (NFI) and rolling force index (RFI). In this regard, two formulas are generated using statistical analysis of the data from around 260 tunnel projects to evaluate both NFI and RFI. The corre-sponding formulas have coefficients of determination of 77 and 68 respectively. These formulas are used in an optimization process to maximize cutter penetration using various operational constraints (cutter load capacity, cutterhead torque limit, cutter geometry constrains, and cutterhead penetration rate limits). The new findings of this study can provide a foundation to improve the design process of hard rock TBMs and to optimize their performance considering various project setting parameters.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号