...
首页> 外文期刊>Angewandte Chemie >Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries
【24h】

Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries

机译:Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Poor oxygen diffusion at multiphase interfaces in an air cathode suppresses the energy densities of zinc–air batteries (ZABs). Developing effective strategies to tackle the issue is of great significance for overcoming the performance bottleneck. Herein, inspired by the bionics of diving flies, a polytetrafluoroethylene layer was coated on the surfaces of Co3O4 nanosheets (NSs) grown on carbon cloth (CC) to create a hydrophobic surface to enable the formation of more three‐phase reaction interfaces and promoted oxygen diffusion, rendering the hydrophobic‐Co3O4 NSs/CC electrode a higher limiting current density (214 mA cm−2 at 0.3 V) than that (10 mA cm−2) of untreated‐Co3O4 NSs/CC electrode. Consequently, the assembled ZAB employing hydrophobic‐Co3O4 NSs/CC cathode acquired a higher power density (171 mW cm−2) than that (102 mW cm−2) utilizing untreated‐Co3O4 NSs/CC cathode, proving the enhanced interfacial reaction kinetics on air cathode benefiting from the hydrophobization engineering.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号