...
首页> 外文期刊>ACS nano >Biodegradable Hollow Nanoscavengers Restore Liver Functions to Reverse Insulin Resistance in Type 2 Diabetes
【24h】

Biodegradable Hollow Nanoscavengers Restore Liver Functions to Reverse Insulin Resistance in Type 2 Diabetes

机译:Biodegradable Hollow Nanoscavengers Restore Liver Functions to Reverse Insulin Resistance in Type 2 Diabetes

获取原文
获取原文并翻译 | 示例
           

摘要

Type 2 diabetes (T2D) results from the cells’ insulin resistance, and to date, insulin therapy and diabetes medications targeting glycemic management have failed to reverse the increase in T2D prevalence. Restoring liver functions to improve hepatic insulin resistance by reducing oxidative stress is a potential strategy for T2D treatment. Herein, the liver-targeted biodegradable silica nanoshells embedded with platinum nanoparticles (Pt-SiO2) are designed as reactive oxygen species (ROS) nanoscavengers and functional hollow nanocarriers. Then, 2,4-dinitrophenol-methyl ether (DNPME, mitochondrial uncoupler) is loaded inside Pt-SiO2, followed by coating a lipid bilayer (D@Pt-SiO2@L) for long-term effective ROS removal (platinum nanoparticles scavenge overproduced ROS, while DNPME inhibits ROS production) in the liver tissue of T2D models. It is found that D@Pt-SiO2@L reverses elevated oxidative stress, insulin resistance, and impaired glucose consumption in vitro, and significantly improves hepatic steatosis and antioxidant capacity in diabetic mice models induced by a high-fat diet and streptozotocin. Moreover, intravenous administration of D@Pt-SiO2@L indicates therapeutic effects on hyperlipidemia, insulin resistance, hyperglycemia, and diabetic nephropathy, which provides a promising approach for T2D treatment by reversing hepatic insulin resistance through long-term ROS scavenging.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号