...
首页> 外文期刊>ACS nano >Electricity Generation and Self-Powered Sensing Enabled by Dynamic Electric Double Layer at Hydrogel-Dielectric Elastomer Interfaces
【24h】

Electricity Generation and Self-Powered Sensing Enabled by Dynamic Electric Double Layer at Hydrogel-Dielectric Elastomer Interfaces

机译:Electricity Generation and Self-Powered Sensing Enabled by Dynamic Electric Double Layer at Hydrogel-Dielectric Elastomer Interfaces

获取原文
获取原文并翻译 | 示例
           

摘要

The electric double layer (EDL) at liquid-solid interfaces is fundamental to many research areas ranging from electrochemistry and microfluidics to colloidal chemistry. Here, we demonstrate the electricity generation by mechanically modulating the EDL at the hydrogel-dielectric polymer interfaces. It is found that contact electrification between the hydrogel and the dielectric polymer could charge the dielectric polymer surface at first; the mechanical deformation of the pyramid-shaped hydrogel results in the periodic variation of the EDL area and capacitance, which then induces an alternative current in the external circuits. This mechano-to-electrical energy conversion mechanism is then utilized to construct soft stretchable self-powered pressure sensors by designing dynamic EDL at hydrogel-dielectric elastomer interfaces. The sensitivity is optimized to 1.40 kPa(-1) in the low-pressure range of 31-300 Pa by increasing the elastomer roughness. Its antifreeze performance is also improved by adding ethylene glycol into the hydrogel. The capability in detecting subtle human activities is further demonstrated. This mechano-electrical energy conversion and the corresponding self-powered sensor can be widely applied in future soft electronics.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号