...
首页> 外文期刊>Angewandte Chemie >Low Catalyst Loading Enhances Charge Accumulation for Photoelectrochemical Water Splitting
【24h】

Low Catalyst Loading Enhances Charge Accumulation for Photoelectrochemical Water Splitting

机译:Low Catalyst Loading Enhances Charge Accumulation for Photoelectrochemical Water Splitting

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Solar water oxidation is a critical step in artificial photosynthesis. Successful completion of the process requires four holes and releases four protons. It depends on the consecutive accumulation of charges at the active site. While recent research has shown an obvious dependence of the reaction kinetics on the hole concentrations on the surface of heterogeneous (photo)electrodes, little is known about how the catalyst density impacts the reaction rate. Using atomically dispersed Ir catalysts on hematite, we report a study on how the interplay between the catalyst density and the surface hole concentration influences the reaction kinetics. At low photon flux, where surface hole concentrations are low, faster charge transfer was observed on photoelectrodes with low catalyst density compared to high catalyst density; at high photon flux and high applied potentials, where surface hole concentrations are moderate or high, slower surface charge recombination was afforded by low‐density catalysts. The results support that charge transfer between the light absorber and the catalyst is reversible; they reveal the unexpected benefits of low‐density catalyst loading in facilitating forward charge transfer for desired chemical reactions. It is implied that for practical solar water splitting devices, a suitable catalyst loading is important for maximized performance.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号