...
首页> 外文期刊>ACS nano >Modulating Catalytic Activity and Stability of Atomically Precise Gold Nanoclusters as Peroxidase Mimics via Ligand Engineering
【24h】

Modulating Catalytic Activity and Stability of Atomically Precise Gold Nanoclusters as Peroxidase Mimics via Ligand Engineering

机译:Modulating Catalytic Activity and Stability of Atomically Precise Gold Nanoclusters as Peroxidase Mimics via Ligand Engineering

获取原文
获取原文并翻译 | 示例
           

摘要

Metal nanoclusters (NCs), composed of a metal core and protecting ligands, show promising potentials as enzyme mimics for producing fuels, pharmaceuticals, and valuable chemicals, etc. Herein, we explore the critical role of ligands in modulating the peroxidase mimic activity and stability of Au NCs. A series of Au15(SR)13 NCs with various thiolate ligands [SR = N-acetyl-l-cysteine (NAC), 3-mercaptopropionic acid (MPA), or 3-mercapto-2-methylpropanoic acid (MMPA)] are utilized as model catalysts. It is found that Au15(NAC)13 shows higher structural stability than Au15(MMPA)13 and Au15(MPA)13 against external stimuli (e.g., pH, oxidants, and temperature) because of the intramolecular hydrogen bonds. More importantly, detailed enzymatic kinetics data show that the catalytic activity of Au15(NAC)13 is about 4.3 and 2.7 times higher than the catalytic activity of Au15(MMPA)13 and Au15(MPA)13, respectively. Density functional theory (DFT) calculations reveal that the Au atoms on the motif of Au NCs should be the active centers, whereas the superior peroxidase mimic activity of Au15(NAC)13 should originate from the emptier orbitals of Au atoms because of the electron-withdrawing effect of acetyl amino group in NAC. This work demonstrates the ligand-engineered electronic structure and functionality of atomically precise metal NCs, which afford molecular and atomic level insights for artificial enzyme design.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号