...
首页> 外文期刊>ACS nano >Symmetry-Breaking and Self-Sorting in Block Copolymer-Based Multicomponent Nanocomposites
【24h】

Symmetry-Breaking and Self-Sorting in Block Copolymer-Based Multicomponent Nanocomposites

机译:Symmetry-Breaking and Self-Sorting in Block Copolymer-Based Multicomponent Nanocomposites

获取原文
获取原文并翻译 | 示例
           

摘要

Co-assembly of inorganic nanoparticles (NPs) and nanostructured polymer matrix represents an intricate interplay of enthalpic or entropic forces. Particle size largely affects the phase behavior of the nanocomposite. Theoretical studies indicate that new morphologies would emerge when the particles become comparable to the soft matrix's size, but this has rarely been supported experimentally. By designing a multicomponent blend composed of NPs, block copolymer-based supramolecules, and small molecules, a 3-D ordered lattice beyond the native BCP's morphology was recently reported when the particle is larger than the microdomain of BCP. The blend can accommodate various formulation variables. In this paper, when the particle size equals the microdomain size, a symmetry-broken phase appears in a narrow range of particle sizes and compositions, which we named the "train track" structure. In this phase, the NPs aligned into a 3-D hexagonal lattice and packed asymmetrically along the c axis, making the projection of the ac and the be plane resemble train tracks. Computational studies show that the broken symmetry reduces the polymer chain deformation and stabilizes the metastable hexagonally perforated lamellar morphology. Given the mobility of the multicomponent blend, the system shows a self-sorting behavior: segregating into two macroscopic phases with different nanostructures based on only a few nanometers NP size differences. Smaller NPs form "train track" morphology, while larger NPs form a "simple hexagon" structure, where the NPs take a symmetric hexagonal arrangement. Detailed structural evolution and simulation studies confirm the systematic-wide cooperativity across different components, indicating the strong self-regulation of the multicomponent system.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号