首页> 外文期刊>Journal of hydrometeorology >Can Model Parameterization Accounting for Hydrological Nonstationarity Improve Robustness in Future Runoff Projection?
【24h】

Can Model Parameterization Accounting for Hydrological Nonstationarity Improve Robustness in Future Runoff Projection?

机译:Can Model Parameterization Accounting for Hydrological Nonstationarity Improve Robustness in Future Runoff Projection?

获取原文
获取原文并翻译 | 示例
           

摘要

Dominant hydrological processes of a catchment could shift due to a changing climate. This climate-induced hydrological nonstationarity could affect the reliability of future runoff projection developed using a hydrological model calibrated for the historical period as the model or parameters may no longer be suitable under a different future hydroclimate. This paper explores whether competing parameterization approaches proposed to account for hydrological nonstationarity could improve the robustness of future runoff projection compared to the traditional approach where the model is calibrated targeting overall model performance over the entire historical period. The modeling experiments are carried out using climate and streamflow datasets from southeastern Australia, which has experienced a long drought and exhibited noticeable hydrological nonstationarity. The results show that robust multicriteria calibration based on the Pareto front can provide a more consistent model performance over contrasting hydroclimate conditions, but at a slight expense of increased bias over the entire historical period compared to the traditional approach. However, the robust calibration does not necessarily result in a more reliable projection of future runoff. This is because the systematic bias in any parameterization approach would propagate from the historical period to the future period and would largely be cancelled out when estimating the relative runoff change. Ensemble simulations combining results from different parameterization considerations could produce a more inclusive range of future runoff projection as it covers the uncertainties due to model parameterization.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号