...
首页> 外文期刊>ACS nano >Germanium Monosulfide as a Natural Platform for Highly Anisotropic THz Polaritons
【24h】

Germanium Monosulfide as a Natural Platform for Highly Anisotropic THz Polaritons

机译:Germanium Monosulfide as a Natural Platform for Highly Anisotropic THz Polaritons

获取原文
获取原文并翻译 | 示例
           

摘要

Terahertz (THz) electromagnetic radiation is key to access collective excitations such as magnons (spins), plasmons (electrons), or phonons (atomic vibrations), thus bridging topics between optics and solid-state physics. Confinement of THz light to the nanometer length scale is desirable for local probing of such excitations in low-dimensional systems, thereby circumventing the large footprint and inherently low spectral power density of far-field THz radiation. For that purpose, phonon polaritons (PhPs) in anisotropic van der Waals (vdW) materials have recently emerged as a promising platform for THz nanooptics. Hence, there is a demand for the exploration of materials that feature not only THz PhPs at different spectral regimes but also host anisotropic (directional) electrical, thermoelectric, and vibronic properties. To that end, we introduce here the semiconducting vdW-material alpha-germanium­(II) sulfide (GeS) as an intriguing candidate. By employing THz nanospectroscopy supported by theoretical analysis, we provide a thorough characterization of the different in-plane hyperbolic and elliptical PhP modes in GeS. We find not only PhPs with long lifetimes (τ > 2 ps) and excellent THz light confinement (λ0/λ > 45) but also an intrinsic, phonon-induced anomalous dispersion as well as signatures of naturally occurring, substrate-mediated PhP canalization within a single GeS slab.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号