...
首页> 外文期刊>Angewandte Chemie >Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries
【24h】

Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries

机译:Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5‐trioxane (TO) and 1,2‐dimethoxyethane (DME) as co‐solvents is proposed to construct a high‐mechanical‐stability SEI by enriching organic components in Li−S batteries. The high‐mechanical‐stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic‐rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO‐based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号