...
首页> 外文期刊>Angewandte Chemie >Illustrating the Fate of Methyl Radical in Photocatalytic Methane Oxidation over Ag−ZnO by in situ Synchrotron Radiation Photoionization Mass Spectrometry
【24h】

Illustrating the Fate of Methyl Radical in Photocatalytic Methane Oxidation over Ag−ZnO by in situ Synchrotron Radiation Photoionization Mass Spectrometry

机译:Illustrating the Fate of Methyl Radical in Photocatalytic Methane Oxidation over Ag−ZnO by in situ Synchrotron Radiation Photoionization Mass Spectrometry

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Photocatalysis has emerged as an ideal method for the direct activation and conversion of methane under mild conditions. In this reaction, methyl radical (⋅CH3) was deemed a key intermediate that affected the yields and selectivity of the products. However, direct observation of ⋅CH3 and other intermediates is still challenging. Here, a rectangular photocatalytic reactor coupled with in situ synchrotron radiation photoionization mass spectrometry (SR‐PIMS) was developed to detect reactive intermediates within several hundred microseconds during photocatalytic methane oxidation over Ag−ZnO. Gas phase ⋅CH3 generated by photogenerated holes (O−) was directly observed, and its formation was demonstrated to be significantly enhanced by coadsorbed oxygen molecules. Methoxy radical (CH3O⋅) and formaldehyde (HCHO) were confirmed to be key C1 intermediates in photocatalytic methane overoxidation to CO2. The gas‐phase self‐coupling reaction of ⋅CH3 contributes to the formation of ethane, which indicates the key role of ⋅CH3 desorption in the highly selective synthesis of ethane. Based on the observed intermediates, the reaction network initiated from ⋅CH3 of photocatalytic methane oxidation could be clearly illustrated, which is helpful for studying the photocatalytic methane conversion processes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号