...
首页> 外文期刊>Angewandte Chemie >Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years
【24h】

Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years

机译:Sustaining Electron Transfer Pathways Extends Biohybrid Photoelectrode Stability to Years

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract The exploitation of natural photosynthetic enzymes in semi‐artificial devices constitutes an attractive and potentially sustainable route for the conversion of solar energy into electricity and solar fuels. However, the stability of photosynthetic proteins after incorporation in a biohybrid architecture typically limits the operational lifetime of biophotoelectrodes to a few hours. Here, we demonstrate ways to greatly enhance the stability of a mesoporous electrode coated with the RC‐LH1 photoprotein from Rhodobacter sphaeroides. By preserving electron transfer pathways, we extended operation under continuous high‐light to 33 days, and operation after storage to over two years. Coupled with large photocurrents that reached peak values of 4.6 mA cm−2, the optimized biophotoelectrode produced a cumulative output of 86 C cm−2, the largest reported performance to date. Our results demonstrate that the factor limiting stability is the architecture surrounding the photoprotein, and that biohybrid sensors and photovoltaic devices with operational lifetimes of years are feasible.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号