...
首页> 外文期刊>Journal of Colloid and Interface Science >Theoretical insight into surface structures of pentlandite toward hydrogen evolution
【24h】

Theoretical insight into surface structures of pentlandite toward hydrogen evolution

机译:Theoretical insight into surface structures of pentlandite toward hydrogen evolution

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Pentlandite (Fe,Ni)(9)S-8 is a promising transition-metal catalyst for the hydrogen evolution reaction. However, little is explained about the long activation process that has been observed in experiments, and its facet-dependent hydrogen evolution activity is still theoretically unrevealed. To explain some experimental phenomena and to guide subsequent studies, density functional theory calculations are used to study the main synthetic surfaces: (111) and (311) in this work. The results show that the small metal cube plays an important role in the surface stability, and it is suggested that such cubes remain intact during catalysis. The linking sites serve as a bridge across the metal cubes and are the main catalytic active sites for hydrogen evolution. This is because the metal cubes can tune the electronic structures of the linking sites, and then the free energy of the linking sites is optimized. The (311) surface is a composite surface that consists of (100) and (111) facets and has the profile of a step. A surface conversion between the (311) and (111) facets may occur when the cube layer length increases. Therefore, the active sites can be feasibly engineered by the surface structures, and this could be helpful in further applications of (Fe,Ni)(9)S-8. (C) 2021 Elsevier Inc. All rights reserved.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号