首页> 外文期刊>Biotechnology Progress >A novel pH‐responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan‐based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction
【24h】

A novel pH‐responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan‐based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction

机译:A novel pH‐responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan‐based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Curcumin application as an anti‐cancer drug is faced with several impediments. This study has developed a platform that facilitates the sustained release of curcumin, improves loading efficiency, and anti‐cancer activity. Montmorillonite (MMT) nanoparticles were added to chitosan (CS)‐agarose (Aga) hydrogel and then loaded with curcumin (Cur) to prepare a curcumin‐loaded nanocomposite hydrogel. The loading capacity increased from 63% to 76% by adding MMT nanoparticles to a chitosan‐agarose hydrogel. Loading the fabricated nanocomposite in the nanoniosomal emulsion resulted in sustained release of curcumin under acidic conditions. Release kinetics analysis showed diffusion and erosion are the dominant release mechanisms, indicating non‐fickian (or anomalous) transport based on the Korsmeyer‐Peppas model. FTIR spectra confirmed that all nanocomposite components were present in the fabricated nanocomposite. Besides, XRD results corroborated the amorphous structure of the prepared nanocomposite. Zeta potential results corroborated the stability of the fabricated nanocarrier. Cytotoxicity of the prepared CS‐Aga‐MMT‐Cur on MCF‐7 cells was comparable with that of curcumin‐treated cells (p?

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号