...
首页> 外文期刊>The Korean journal of chemical engineering >Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid
【24h】

Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid

机译:Numerical simulation of surface vibration effects on improvement of pool boiling heat transfer characteristics of nanofluid

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical scheme for the effects of vibration on nanofluid pool boiling heat transfer was developed. For this purpose, a horizontal flat vibrating heated surface was considered. To model this phase-change phenomenon, the Eulerian-Eulerian approach was employed accompanied by the Rensselaer Polytechnic Institute (RPI) model to estimate the boiling heat flux on a solid surface, based on transient simulation. The k-epsilon turbulence model was used for simulating the Reynolds stresses appearing in the averaged Navier Stokes equation. The effects of the amplitude and frequency of vibration, nanofluid concentration along with magnitude of the heat flux on pool boiling heat transfer characteristics including heat transfer coefficient (HTC), vapor volume fraction and nanofluid velocity were studied. New analytical correlations for analyzing the heat transfer coefficient and nanofluid velocity based on the wall superheat temperature, amplitude and frequency of vibration were also developed. Results showed that applying mechanical vibration increased the boiling curve slope and the heat transfer coefficient. As a consequence, an increase of up to 30.11% and 17.5% in the heat transfer rate was achieved at lower heat fluxes for higher amplitude and frequency of oscillations, respectively.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号