...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >A 90-dB-SNDR Calibration-Free Fully Passive Noise-Shaping SAR ADC With 4× Passive Gain and Second-Order DAC Mismatch Error Shaping
【24h】

A 90-dB-SNDR Calibration-Free Fully Passive Noise-Shaping SAR ADC With 4× Passive Gain and Second-Order DAC Mismatch Error Shaping

机译:A 90-dB-SNDR Calibration-Free Fully Passive Noise-Shaping SAR ADC With 4× Passive Gain and Second-Order DAC Mismatch Error Shaping

获取原文
获取原文并翻译 | 示例
           

摘要

Noise-shaping (NS) successive approximation register (SAR) analog-to-digital converters (ADCs) using passive loop filters have drawn the increasing attentions owing to their simplicity, low power, zero static current, and PVT robustness. However, prior works show the limited resolution because of two main challenges: the thermal noise and the digital-to-analog converter (DAC) mismatch. This article presents a high-resolution full passive NS SAR ADC. It uses an efficient NS filter architecture that realizes a 4inline-formula tex-math notation="LaTeX"$times $ /tex-math/inline-formula passive gain and the passive summation, significantly reducing the total thermal noise. It also realizes the second-order DAC mismatch error shaping (MES) that is tone-free. A digital prediction is proposed to solve the signal-range loss issue caused by the MES, recovering the ADC input signal range to the full swing. A prototype NS SAR ADC is implemented in 40-nm CMOS process. It measures 90.5-dB signal-to-noise-and-distortion ratio (SNDR) and 94.3-dB dynamic range (DR) over 40-kHz bandwidth without any calibration. It consumes 67.4 inline-formula tex-math notation="LaTeX"$mu text{W}$ /tex-math/inline-formula power from a 1.1-V supply and occupies 0.061 mmsup2/sup area.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号