...
首页> 外文期刊>Journal of elliptic and parabolic equations >Lpdocumentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$L^p$$end{document}-strong solution to fluid-rigid body interaction system with Navier slip boundary condition
【24h】

Lpdocumentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$L^p$$end{document}-strong solution to fluid-rigid body interaction system with Navier slip boundary condition

机译:Lpdocumentclass 12pt (minimal} usepackage (amsmath)setlength {oddsidemargin} {-69 pt}开始{文档}$ $ p L ^ $ ${文档}(结束解决fluid-rigid身体交互系统纳维滑移边界条件

获取原文
           

摘要

We study a fluid-structure interaction problem describing movement of a rigid body inside a bounded domain filled by a viscous fluid. The fluid is modelled by the generalized incompressible Naiver–Stokes equations which include cases of Newtonian and non-Newtonian fluids. The fluid and the rigid body are coupled via the Navier slip boundary conditions and balance of forces at the fluid-rigid body interface. Our analysis also includes the case of the nonlinear slip condition. The main results assert the existence of strong solutions, in an Lp-Lqdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$L^p-L^q$$end{document} setting, globally in time, for small data in the Newtonian case, while existence of strong solutions in Lpdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$L^p$$end{document}-spaces, locally in time, is obtained for non-Newtonian case. The proof for the Newtonian fluid essentially uses the maximal regularity property of the associated linear system which is obtained by proving the Rdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathcal {R}}$$end{document}-sectoriality of the corresponding operator. The existence and regularity result for the general non-Newtonian fluid-solid system then relies upon the previous case. Moreover, we also prove the exponential stability of the system in the Newtonian case.
机译:我们研究固耦合问题描述刚体在运动有限域由粘性流体。由广义流体模型不可压缩Naiver-Stokes方程包括牛顿和非牛顿液体。通过纳维滑移边界条件fluid-rigid身体力量的平衡接口。非线性滑动条件。断言强解的存在性,setlength {oddsidemargin} {-69 pt}开始{文档}$ $ L ^ p-L ^问$ ${}文件设置结束,在全球范围内,对小牛顿中的数据情况下,在强解的存在性setlength {oddsidemargin} {-69 pt}{} $ $文件L ^ p年初$ $ end {} -spaces文件,在当地时间,获得非牛顿的情况。基本上使用了规律性的最大的财产获得的相关的线性系统通过证明Rdocumentclass [12 pt]{最小}setlength {oddsidemargin} {-69 pt}{文档}$ $ {mathcal开始{R}} $ ${文档}-sectoriality的结束相应的运营商。一般非牛顿规律性的结果流体系统依赖于前一个的情况。在牛顿的情况下稳定的系统。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号