...
首页> 外文期刊>Nanotechnology >Reversible engineering of topological insulator surface state conductivity through optical excitation
【24h】

Reversible engineering of topological insulator surface state conductivity through optical excitation

机译:拓扑绝缘体表面状态电导率的可逆工程通过光学激励

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.
机译:尽管有宽带响应,但特定波长的有限光吸收阻碍了基于狄拉克费米子的光电子学的发展。石墨烯和各种半导体的异质结构已被探索用于此目的,而非理想界面往往会限制性能。拓扑绝缘体(TI)是一个自然的混合系统,表面态拥有高迁移率的狄拉克费米子,而小禁带半导体体态强烈吸收光。在这项工作中,我们展示了基于本征TI-Sn-Bi1的场效应晶体管器件的大光电流响应。1Sb0。9Te2S(锡BSTS)。光电流响应是非易失性的,并且敏感地取决于表面态的初始费米能量,并且可以通过控制栅极电压来擦除。我们的观察结果可以用一种远程光掺杂机制来解释,在这种机制中,光激发体中的缺陷,并将局域载流子释放到表面态。这种光掺杂在不影响迁移率的情况下调节了表面态的导电性,并且显著地改变了表面态的量子霍尔效应。因此,我们的工作阐明了一种通过光激发可逆地操纵表面态的方法,从而使光利用拓扑表面态进行量子光电子学。

著录项

  • 来源
    《Nanotechnology》 |2021年第17期|共7页
  • 作者单位

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Rensselaer Polytech Inst Dept Chem &

    Biol Engn Troy NY 12810 USA;

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Rensselaer Polytech Inst Dept Chem &

    Biol Engn Troy NY 12810 USA;

    Rensselaer Polytech Inst Dept Chem &

    Biol Engn Troy NY 12810 USA;

    Chinese Acad Sci Shanghai Inst Tech Phys State Key Lab Infrared Phys Shanghai 200083 Peoples R China;

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Chinese Acad Sci Shanghai Inst Tech Phys State Key Lab Infrared Phys Shanghai 200083 Peoples R China;

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Nanjing Univ Sch Phys Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Chinese Acad Sci Shanghai Inst Tech Phys State Key Lab Infrared Phys Shanghai 200083 Peoples R China;

    Rensselaer Polytech Inst Dept Chem &

    Biol Engn Troy NY 12810 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    topological insulator; Dirac fermion; surface states; photodoping; quantum Hall effect;

    机译:拓扑绝缘体;狄拉克费米子;表面状态;光照;量子霍尔效应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号