...
首页> 外文期刊>Nanotechnology >The exceptionally high thermal conductivity after 'alloying' two-dimensional gallium nitride (GaN) and aluminum nitride (AlN)
【24h】

The exceptionally high thermal conductivity after 'alloying' two-dimensional gallium nitride (GaN) and aluminum nitride (AlN)

机译:“合金化”二维氮化镓(GaN)和氮化铝(ALN)之后的异常高导电性

获取原文
获取原文并翻译 | 示例
           

摘要

Alloying is a widely employed approach for tuning properties of materials, especially for thermal conductivity which plays a key role in the working liability of electronic devices and the energy conversion efficiency of thermoelectric devices. Commonly, the thermal conductivity of an alloy is acknowledged to be the smallest compared to the parent materials. However, the findings in this study bring some different points of view on the modulation of thermal transport by alloying. The thermal transport properties of monolayer GaN, AlN, and their alloys of GaxAl1-xN are comparatively investigated by solving the Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of Ga0.25Al0.75N alloy (29.57 Wm(-1) K-1) and Ga0.5Al0.5N alloy (21.49 Wm(-1) K-1) are found exceptionally high to be between AlN (74.42 Wm(-1) K-1) and GaN (14.92 Wm(-1) K-1), which violates the traditional knowledge that alloying usually lowers thermal conductivity. The mechanism resides in that, the existence of Al atoms reduces the difference in atomic radius and masses of the Ga0.25Al0.75N alloy, which also induces an isolated optical phonon branch around 18 THz. As a result, the scattering phase space of Ga0.25Al0.75N is largely suppressed compared to GaN. The microscopic analysis from the orbital projected electronic density of states and the electron localization function further provides insight that the alloying process weakens the polarization of bonding in Ga0.25Al0.75N alloy and leads to the increased thermal conductivity. The exceptionally high thermal conductivity of the GaxAl1-xN alloys and the underlying mechanism as revealed in this study would bring valuable insight for the future research of materials with applications in high-performance thermal management.
机译:合金化是调节材料性能的一种广泛使用的方法,尤其是导热系数,它对电子器件的工作可靠性和热电器件的能量转换效率起着关键作用。通常,与母材相比,合金的导热系数最小。然而,本研究的发现对合金化对热传输的调节提出了一些不同的观点。通过求解基于第一性原理计算的玻尔兹曼输运方程(BTE),对单层GaN、AlN及其GaxAl1-xN合金的热输运特性进行了比较研究。Ga0的热导率。25Al0。75N合金(29.57WM(-1)K-1)和Ga0。5Al0。发现5N合金(21.49WM(-1)K-1)在AlN(74.42WM(-1)K-1)和GaN(14.92WM(-1)K-1)之间异常高,这违反了合金化通常会降低热导率的传统知识。其机制在于,铝原子的存在减少了Ga0原子半径和质量的差异。25Al0。75N合金,也会在18太赫兹附近产生一个孤立的光学声子分支。结果表明,Ga0的散射相空间。25Al0。与GaN相比,75N在很大程度上受到抑制。从轨道投影电子态密度和电子局部化函数的微观分析进一步揭示了合金化过程削弱了Ga0中键的极化。25Al0。75N合金,导致导热系数增加。本研究揭示的GaxAl1-xN合金具有极高的导热性和潜在机理,将为未来高性能热管理材料的研究带来有价值的见解。

著录项

  • 来源
    《Nanotechnology》 |2021年第13期|共11页
  • 作者单位

    Nanjing Univ Jiangsu Key Lab Artificial Funct Mat Coll Engn &

    Appl Sci Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Hunan Univ Coll Mech &

    Vehicle Engn State Key Lab Adv Design &

    Mfg Vehicle Body Changsha 410082 Peoples R China;

    Changsha Univ Sci &

    Technol Sch Mat Sci &

    Engn Changsha 410004 Peoples R China;

    Zhengzhou Univ Sch Phys &

    Microelect Zhengzhou 450001 Peoples R China;

    Hunan Univ Coll Mech &

    Vehicle Engn State Key Lab Adv Design &

    Mfg Vehicle Body Changsha 410082 Peoples R China;

    Nanjing Univ Jiangsu Key Lab Artificial Funct Mat Coll Engn &

    Appl Sci Natl Lab Solid State Microstruct Nanjing 210093 Peoples R China;

    Univ South Carolina Dept Mech Engn Columbia SC 29208 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    thermal transport; alloy; isolated optical phonon branch; electronic bonding; first-principles;

    机译:热输运;合金孤立光学声子分支;电子键合;首要原则;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号