...
首页> 外文期刊>Nanotechnology >Numerical homogenization of thermal conductivity of particle-filled thermal interface material by fast Fourier transform method
【24h】

Numerical homogenization of thermal conductivity of particle-filled thermal interface material by fast Fourier transform method

机译:快速傅里叶变换方法对粒子填充热界面材料热导率的数值均匀化

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal interface material (TIM) is pivotal for the heat dissipation between layers of high-density electronic packaging. The most widely used TIMs are particle-filled composite materials, in which highly conductive particulate fillers are added into the polymer matrix to promote heat conduction. The numerical simulation of heat transfer in the composites is essential for the design of TIMs; however, the widely used finite element method (FEM) requires large memory and presents limited computational time for the composites with dense particles. In this work, a numerical homogenization algorithm based on fast Fourier transform was adopted to estimate the thermal conductivity of composites with randomly dispersed particles in 3D space. The unit cell problem is solved by means of a polarization-based iterative scheme, which can accelerate the convergence procedure regardless of the contrast between various components. The algorithm shows good precision and requires dramatically reduced computation time and cost compared with FEM. Moreover, the effect of the particle volume fraction, interface thermal resistance between particles (R-PP), interface thermal resistance between particle and matrix (R-PM), and particle size have been estimated. It turns out that the effective conductivity of the particulate composites increases sharply at a critical filler volume fraction, after which it is sensitive to the variation of filler loading. We can observe that the effective thermal conductivity of the composites with low filler volume fraction is sensitive to R-PM, whereas the it is governed by R-PP for the composites with high filler content. The algorithm presents excellent efficiency and accuracy, showing potential for the future design of highly thermally conductive TIMs.
机译:热界面材料(TIM)是高密度电子封装层间散热的关键。使用最广泛的TIM是颗粒填充复合材料,其中高导电性颗粒填料被添加到聚合物基体中以促进热传导。复合材料传热的数值模拟对TIMs的设计至关重要;然而,对于颗粒密集的复合材料,广泛使用的有限元法(FEM)需要大量内存,计算时间有限。本文采用一种基于快速傅立叶变换的数值均匀化算法,在三维空间中估算了随机分散颗粒复合材料的导热系数。单元问题通过基于偏振的迭代方案来解决,该方案可以加速收敛过程,而不管各个分量之间的对比度如何。与有限元法相比,该算法具有很好的精度,并大大减少了计算时间和成本。此外,还估算了颗粒体积分数、颗粒间界面热阻(R-PP)、颗粒与基体间界面热阻(R-PM)和颗粒尺寸的影响。结果表明,在临界填料体积分数下,颗粒复合材料的有效电导率急剧增加,之后,其对填料负载量的变化非常敏感。我们可以观察到,填充物体积分数低的复合材料的有效导热系数对R-PM敏感,而填充物含量高的复合材料的有效导热系数受R-PP控制。该算法具有良好的效率和精度,显示了未来设计高导热TIM的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号