...
首页> 外文期刊>Nanotechnology >Nanotechnology for catalysis and solar energy conversion
【24h】

Nanotechnology for catalysis and solar energy conversion

机译:用于催化和太阳能转换的纳米技术

获取原文
获取原文并翻译 | 示例
           

摘要

This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.
机译:这张催化和太阳能转换纳米技术路线图的重点是纳米技术在解决当前能源转换挑战中的应用:“高效、稳定、安全,以及低成本/可扩展制造的潜力”,引自Nathan Lewis的文章。该路线图的重点是太阳能到燃料转换、太阳能水分解、太阳能光伏和生物催化。它包括染料敏化太阳能电池(DSSC)、钙钛矿太阳能电池和有机光伏电池。正如Waiskopf、Banin和Meyer的文章所述,胶体量子材料和纳米结构电极的智能工程将提高太阳能到燃料的转换效率。正如Boschloo等人在其关于DSSC的文章中所讨论的,半导体纳米颗粒还将提高太阳能转换效率。钙钛矿太阳能电池近年来发展迅速,包括2D和3D混合卤化物钙钛矿的新想法,如Spanopoulos等人所述,使用热载流子产生多激子(MEG)的“下一代”太阳能电池,如Nozik和Beard的文章所述,通过在半导体纳米结构(量子点、线或阱)中使用量化效应,可以显著提高光伏效率。如果不同时改进纳米尺度的表征方法,就无法应对这些挑战。Milot等人在文章中讨论的太赫兹光谱是一种方法的示例,该方法通过避免与纳米颗粒的电接触,允许在设备操作期间进行表征,并实现单个纳米颗粒的表征,克服了与纳米材料表征相关的困难。除了实验上的进步,计算科学也在迎接纳米材料合成的挑战。Kohlstedt和Schatz的文章讨论了用于预测材料和器件结构-性能关系的计算框架,包括机器学习方法,重点是有机光伏。Megarity和阿姆斯特朗的贡献为电化学及其他领域的改进提供了“电化学叶子”。此外,生物杂交方法可以利用高效和特异的酶催化剂。这些文章介绍了处于可再生能源发展前沿的纳米科学和技术,这些技术将对社会产生重大效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号