...
首页> 外文期刊>Microwave and optical technology letters >Performance analysis of optomechanical-based microcantilever sensor with various geometrical shapes
【24h】

Performance analysis of optomechanical-based microcantilever sensor with various geometrical shapes

机译:具有各种几何形状的基于光学机械的微电势传感器性能分析

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a performance analysis of different microcantilever shapes integrated with the optical MEMS system in different fluid mediums. Microcantilevers such as rectangular, trapezoidal, and triangle profile are coupled with optical sensing layers. Here, the concept of integration of optical sensing layer with different shapes of microcantilever is novel. The cantilever is designed and developed in CAD tools. Numerical analysis of different shapes of microcantilever was carried out with the help of Ansys Workbench. Optimal design of the regular microcantilever is considered during the analysis. The pressure is applied to the free end of the cantilever in the range of 100 to 250 kPa. The complete photonic sensing layer is analyzed with the help of an finite difference time domain (FDTD) tool called MIT Electromagnetic Equation Propagation (MEEP). The transmission spectrum is obtained for each microcantilever model. The pressure-induced refractive index is calculated for the equivalent maximum stress generated. The result shows that a remarkable Q factor was obtained for rectangular, trapezoidal, and triangular profile microcantilevers with an optical system. Triangular and rectangular profiles have shown remarkable contribution over quality factor for air mediums such as 10 120, 1300, respectively. High pressure sensitivity of 1.92 nm/kPa was obtained for rectangular microcantilever in air. Least sensitivity of 0.16 nm/kPa was obtained for triangle microcantilever in the water medium. The proposed work successfully distinguishes various shapes of microcantilever in terms of sensitivity and Q factor. It is having tremendous application in sensing biofluids and in device miniaturization.
机译:本文对集成在光学MEMS系统中的不同形状的微悬臂梁在不同流体介质中的性能进行了分析。诸如矩形、梯形和三角形轮廓的微悬臂梁与光学传感层耦合。在这里,集成不同形状微悬臂梁的光学传感层的概念是新颖的。悬臂梁是在CAD工具中设计和开发的。借助Ansys Workbench对不同形状的微悬臂进行了数值分析。分析中考虑了规则微悬臂梁的优化设计。施加在悬臂自由端的压力范围为100至250 kPa。利用时域有限差分(FDTD)工具MIT电磁方程传播(MEEP)对整个光子传感层进行了分析。得到了每个微悬臂梁模型的透射谱。根据产生的等效最大应力计算压力诱导折射率。结果表明,对于带有光学系统的矩形、梯形和三角形轮廓的微悬臂梁,获得了显著的Q因子。三角形和矩形剖面对空气介质(如10120和1300)的品质因数有显著贡献。矩形微悬臂梁在空气中的压力灵敏度为1.92nm/kPa。在水介质中,三角形微悬臂梁的最小灵敏度为0.16nm/kPa。所提出的工作成功地在灵敏度和Q因子方面区分了各种形状的微悬臂梁。它在生物流体传感和设备小型化方面有着巨大的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号