...
首页> 外文期刊>International Journal of Quantum Chemistry >Computation-driven synthesis of pentothal sodium
【24h】

Computation-driven synthesis of pentothal sodium

机译:计算驱动的五旬节钠的合成

获取原文
获取原文并翻译 | 示例
           

摘要

Different reaction conditions or reaction sequences are critical problems to be solved in synthetic chemistry research. Calculating possible reaction paths with quantum chemistry methods could effectively drive the development of chemical synthesis. Here, we take the synthesis of thiopental (or pentothal sodium), an ultra-short-acting general anesthetic that induces hypnosis and anesthesia, as an example. Different synthetic routes for this compound have been reported in the literature, but detailed information such as the alkylation sequence is illusive. In this work, we revisited the thiopental synthesis path with combined computational prediction and experimental validation. We explored the reaction mechanism of each putative elementary step with density functional theory (DFT) calculations. Our computations show that two different alkylation paths (with either 2-bromopentane or bromoethane) are both possible. However, the reaction order has a significant impact on the amount of by-products in the synthesis product. The subsequent experiments validated the predicted alkylation sequence from DFT calculations. We further showed that EtONa/EtOH is much better than NaH/EtOH to produce thiopental through thiourea's reaction with 2-ethyl-2-(1-methylbutyl) diethyl malonate with a higher yield of the target product. The proposed synthetic path gives a total yield of 66%, higher than the literature reported. Therefore, the computation-driven synthesis of drug molecules provides new insight into the synthetic route's appropriate design and optimization of reaction conditions.
机译:不同的反应条件或反应顺序是合成化学研究中需要解决的关键问题。用量子化学方法计算可能的反应路径可以有效地推动化学合成的发展。在这里,我们以合成硫喷妥钠(或硫喷妥钠)为例,它是一种超短效的全身麻醉剂,可诱导催眠和麻醉。文献中报道了该化合物的不同合成路线,但烷基化顺序等详细信息是不真实的。在这项工作中,我们结合计算预测和实验验证,重新探讨了硫喷妥钠的合成途径。我们用密度泛函理论(DFT)计算探索了每个假定的基本步骤的反应机理。我们的计算表明,两种不同的烷基化路径(2-溴戊烷或溴乙烷)都是可能的。然而,反应顺序对合成产物中副产物的数量有重大影响。随后的实验验证了DFT计算预测的烷基化序列。我们进一步证明,通过硫脲与2-乙基-2-(1-甲基丁基)丙二酸二乙酯的反应,EtONa/EtOH比NaH/EtOH更好地生成硫喷妥钠,目标产物的产率更高。该合成路线的总收率为66%,高于文献报道。因此,计算驱动的药物分子合成为合成路线的适当设计和反应条件的优化提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号