...
首页> 外文期刊>Applied optics >Low-pressure multipass Raman spectrometer
【24h】

Low-pressure multipass Raman spectrometer

机译:低压多脂式拉曼光谱仪

获取原文
获取原文并翻译 | 示例
           

摘要

Nonintrusive, quantitative measurements of thermodynamic properties of flows associated with propulsion systems are pivotal to advance their design and optimization. Laser-based diagnostics are ideal to provide quantitative results without influencing the flow; however, the environments in which such flows exist are often not conducive for such techniques. Namely, they often lack the optical accessibility required to facilitate the delivery of incident laser radiation and the subsequent collection of induced signals. A particularly challenging, yet crucial, task is to measure thermodynamic properties of plumes issuing from thrusters operating within a vacuum chamber. Large chambers used to simulate the vacuum of space generally lack optical ports that can facilitate complex laser-based measurements. Additionally, the near-vacuum environments within such chambers coupled with the ability of thrusters to efficiently expand the gas flowing through their nozzles lead to plumes with prohibitively low number densities (pressures below 1 Torr). Thus, there is a need to develop a diagnostic system that can offer high throughput without the use of free-space optical ports. Moreover, facilities where propulsion systems are tested typically lack vibrationally isolated space for diagnostic equipment and accurate climate control. As a result, such a high-throughput system must also be compact, versatile, and robust. To this end, the present work describes a fiber-coupled, multipass cell, spontaneous Raman scattering spectroscopy system. This system is intended to provide accurate temperature measurements within low-pressure environments via H2 rotational Raman thermometry. Proof-of-principle measurements are successfully performed at pressures as low as 67 Pa (500 mTorr). Techniques to maintain the signal-to-noise ratio at lower pressures, and the trade-offs associated with them, are discussed and evaluated. Finally, the ability of this system to facilitate additional quantitative measurements is also discussed. (C) 2021 Optical Society of America
机译:与推进系统相关的流体热力学性质的非侵入性定量测量对于推进推进系统的设计和优化至关重要。基于激光的诊断非常适合在不影响流量的情况下提供定量结果;然而,这种流动存在的环境往往不利于这种技术。也就是说,它们通常缺乏便于传输入射激光辐射和随后收集感应信号所需的光学可达性。一项特别具有挑战性但又至关重要的任务是测量真空室内推力器产生的羽流的热力学性质。用于模拟空间真空的大型腔室通常缺少光学端口,这些端口可以方便进行复杂的基于激光的测量。此外,此类腔室内的近真空环境加上推进器有效膨胀流经其喷嘴的气体的能力,导致羽流的数密度低得令人望而却步(压力低于1托)。因此,有必要开发一种诊断系统,该系统可以在不使用自由空间光端口的情况下提供高吞吐量。此外,测试推进系统的设施通常缺乏用于诊断设备和精确气候控制的振动隔离空间。因此,这样一个高通量系统也必须紧凑、通用和健壮。为此,本工作描述了一种光纤耦合、多程单元、自发拉曼散射光谱系统。该系统旨在通过H2旋转拉曼测温法在低压环境中提供精确的温度测量。在低至67 Pa(500 mTorr)的压力下成功进行了原理验证测量。讨论和评估了在较低压力下保持信噪比的技术,以及与之相关的权衡。最后,还讨论了该系统促进额外定量测量的能力。(2021)美国光学学会

著录项

  • 来源
    《Applied optics》 |2021年第3期|共12页
  • 作者单位

    US Naval Res Lab Combust &

    Reacting Transport 4555 Overlook Ave SW Washington DC 20375 USA;

    US Naval Res Lab Combust &

    Reacting Transport 4555 Overlook Ave SW Washington DC 20375 USA;

    US Naval Res Lab Combust &

    Reacting Transport 4555 Overlook Ave SW Washington DC 20375 USA;

    US Naval Res Lab Spacecraft Engn Dept 4555 Overlook Ave SW Washington DC 20375 USA;

    US Naval Res Lab Spacecraft Engn Dept 4555 Overlook Ave SW Washington DC 20375 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号