...
首页> 外文期刊>Angewandte Chemie >Non-Equilibrium Large-Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles
【24h】

Non-Equilibrium Large-Scale Membrane Transformations Driven by MinDE Biochemical Reaction Cycles

机译:由Minde生化反应循环驱动的非平衡大规模膜变换

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The MinDE proteins from E. coli have received great attention as a paradigmatic biological pattern-forming system. Recently, it has surfaced that these proteins do not only generate oscillating concentration gradients driven by ATP hydrolysis, but that they can reversibly deform giant vesicles. In order to explore the potential of Min proteins to actually perform mechanical work, we introduce a new model membrane system, flat vesicle stacks on top of a supported lipid bilayer. MinDE oscillations can repeatedly deform these flat vesicles into tubules and promote progressive membrane spreading through membrane adhesion. Dependent on membrane and buffer compositions, Min oscillations further induce robust bud formation. Altogether, we demonstrate that under specific conditions, MinDE self-organization can result in work performed on biomimetic systems and achieve a straightforward mechanochemical coupling between the MinDE biochemical reaction cycle and membrane transformation.
机译:大肠杆菌MinDE蛋白作为一种典型的生物模式形成系统受到了广泛关注。最近,人们发现这些蛋白质不仅在ATP水解的驱动下产生振荡的浓度梯度,而且可以可逆地使巨大的囊泡变形。为了探索Min蛋白实际执行机械工作的潜力,我们引入了一种新的模型膜系统,即扁平囊泡堆叠在支撑的脂质双层上。MinDE振荡可以反复将这些扁平的囊泡变形为小管,并通过膜粘附促进膜的进行性扩散。依赖于膜和缓冲成分,Min振荡进一步诱导健壮的芽形成。总之,我们证明在特定条件下,MinDE自组织可以在仿生系统上进行工作,并在MinDE生化反应循环和膜转化之间实现直接的机械化学耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号