...
首页> 外文期刊>ACS nano >Enhancing Polysulfide Confinement and Electrochemical Kinetics by Amorphous Cobalt Phosphide for Highly Efficient Lithium-Sulfur Batteries
【24h】

Enhancing Polysulfide Confinement and Electrochemical Kinetics by Amorphous Cobalt Phosphide for Highly Efficient Lithium-Sulfur Batteries

机译:用作高效锂 - 硫磺电池的无定形钴磷脂增强多硫化物约束和电化学动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The application of lithium-sulfur (Li-S) batteries is severely hampered by the shuttle effect and sluggish redox kinetics. Herein, amorphous cobalt phosphide grown on a reduced graphene oxide-multiwalled carbon nanotube (rGO-CNT-CoP(A)) is designed as the sulfur host to conquer the above bottlenecks. The differences between amorphous cobalt phosphide (CoP) and crystalline CoP on the surface adsorption as well as conversion of lithium polysulfides (LiPSs) are investigated by systematical experiments and density-functional theory (DFT) calculations. Specifically, the amorphous CoP not only strengthens the chemical adsorption to LiPSs but also greatly accelerates liquid-phase conversions of LiPSs as well as the nucleation and growth of Li2S. DFT calculation reveals that the amorphous CoP possesses higher binding energies and lower diffusion energy barriers for LiPSs. In addition, the amorphous CoP features reduced energy gap and the increased electronic concentrations of adsorbed LiPSs near Fermi level. These characteristics contribute to the enhanced chemisorption ability and the accelerated redox kinetics. Simultaneously, the prepared S/rGO-CNT-CoP(A) electrode delivers an impressive initial capacity of 872 mAh g(-1) at 2 C and 617 mAh g(-1) can be obtained after 200 cycles, exhibiting excellent cycling stability. Especially, it achieves outstanding electrochemical performance even under high sulfur loading (5.3 mg cm(-2)) and lean electrolyte (E/S = 7 mu L-E mg(s)(-1)) conditions. This work exploits the application potential for amorphous materials and contributes to the development of highly efficient Li-S batteries.
机译:穿梭效应和缓慢的氧化还原动力学严重阻碍了锂硫电池的应用。在此,在还原石墨烯氧化物多壁碳纳米管(rGO CNT CoP(a))上生长的非晶态磷化钴被设计为硫主体,以克服上述瓶颈。通过系统实验和密度泛函理论(DFT)计算,研究了非晶态磷化钴(CoP)和晶态磷化钴(CoP)在多硫化锂(LIPS)表面吸附和转化方面的差异。具体而言,非晶态CoP不仅增强了对LiPSs的化学吸附,而且极大地加速了LiPSs的液相转化以及Li2S的成核和生长。DFT计算表明,非晶态CoP具有较高的结合能和较低的扩散能垒。此外,非晶态CoP的特点是能隙减小,费米能级附近吸附的LiPs的电子浓度增加。这些特性有助于增强化学吸附能力和加速氧化还原动力学。同时,制备的S/rGO CNT CoP(A)电极在2℃时提供令人印象深刻的初始容量872 mAh g(-1),200次循环后可获得617 mAh g(-1),表现出优异的循环稳定性。尤其是在高含硫量(5.3 mg cm(-2))和贫电解液(E/S=7μL-E mg(S)-1))条件下,它仍能获得优异的电化学性能。这项工作开发了非晶态材料的应用潜力,有助于开发高效锂硫电池。

著录项

  • 来源
    《ACS nano》 |2021年第1期|共12页
  • 作者单位

    Beijing Inst Technol Beijing Key Lab Chem Power Source &

    Green Catalys Sch Chem &

    Chem Engn Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Chem Power Source &

    Green Catalys Sch Chem &

    Chem Engn Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Chem Power Source &

    Green Catalys Sch Chem &

    Chem Engn Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Chem Power Source &

    Green Catalys Sch Chem &

    Chem Engn Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Chem Power Source &

    Green Catalys Sch Chem &

    Chem Engn Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Chem Power Source &

    Green Catalys Sch Chem &

    Chem Engn Beijing 100081 Peoples R China;

    Beijing Inst Technol Beijing Key Lab Chem Power Source &

    Green Catalys Sch Chem &

    Chem Engn Beijing 100081 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

    amorphous materials; cobalt phosphide; electrochemical kinetics; lithium-sulfur batteries; cathodes;

    机译:非晶态材料;磷化钴;电化学动力学;锂硫电池;阴极;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号