...
首页> 外文期刊>ACS nano >Metal-Organic Framework-Derived Nanoconfinements of CoF2 and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery
【24h】

Metal-Organic Framework-Derived Nanoconfinements of CoF2 and Mixed-Conducting Wiring for High-Performance Metal Fluoride-Lithium Battery

机译:COF2的金属 - 有机框架衍生的COF2和用于高性能金属氟锂电池的混合导电布线

获取原文
获取原文并翻译 | 示例
           

摘要

Metal fluoride (MF) conversion cathodes theoretically show higher gravimetric and volumetric capacities than Ni- or Co-based intercalation oxide cathodes, which makes metal fluoride-lithium batteries promising candidates for next-generation high-energy-density batteries. However, their high-energy characteristics are clouded by low-capacity utilization, large voltage hysteresis, and poor cycling stability of transition MF cathodes. A variety of reasons is responsible for this: poor reaction kinetics, low conductivities, unstable MF/electrolyte interfaces and dissolution of active species upon cycling. Herein, we combine the synthesis of the metal-organic-framework (MOF) with the low-temperature fluorination to prepare MOF-shaped CoF2@C nanocomposites that exhibit confinement of the CoF2 nanoparticles and efficient mixed-conducting wiring in the produced architecture. The ultrasmall CoF2 nanoparticles (5-20 nm on average) are uniformly covered by graphitic carbon walls and embedded in the porous carbon framework. Within the CoF2@C nanocomposite, the cross-linked carbon wall and interconnected nanopores serve as electron- and ion-conducting pathways, respectively, enabling a highly reversible conversion reaction of CoF2. As a result, the produced CoF2@C composite cathodes successfully restrain the above-mentioned challenges and demonstrate high-capacity utilization of , similar to 500 mAh g(-1) at 0.2C, good rate capability (up to 2C), and long-term cycle stability over 400 cycles. Overall, the presented study not only reports on a simple composite design to achieve high-energy characteristics in CoF2-Li batteries but also may provide a general solution for many other metal fluoride-lithium batteries.
机译:理论上,金属氟化物(MF)转换阴极比镍基或钴基插层氧化物阴极具有更高的重量和体积容量,这使得金属氟化物锂电池有望成为下一代高能量密度电池的候选电池。然而,它们的高能特性因低容量利用率、大电压滞后和过渡MF阴极的低循环稳定性而蒙上阴影。原因有很多:反应动力学差、电导率低、MF/电解质界面不稳定以及循环时活性物质溶解。在此,我们将金属有机骨架(MOF)的合成与低温氟化相结合来制备MOF形状CoF2@C纳米复合材料展示了CoF2纳米颗粒的局限性,并在生产的结构中实现了高效的混合导电布线。超小的CoF2纳米颗粒(平均5-20纳米)被石墨碳壁均匀覆盖并嵌入多孔碳框架中。在CoF2@C纳米复合材料、交联碳壁和相互连接的纳米孔分别作为电子和离子传导途径,实现了CoF2的高度可逆转化反应。因此,产生了CoF2@C复合阴极成功地抑制了上述挑战,在0.2C下表现出类似于500 mAh g(-1)的高容量利用率、良好的速率性能(高达2C),以及超过400次循环的长期循环稳定性。总体而言,本研究不仅报告了一种简单的复合材料设计,以实现CoF2锂电池的高能特性,还可能为许多其他金属氟化物锂电池提供一种通用解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号