首页> 外文期刊>Pure and Applied Geophysics >Improved 3D Cauchy-type Integral for Faster and More Accurate Forward Modeling of Gravity Data Caused by Basement Relief
【24h】

Improved 3D Cauchy-type Integral for Faster and More Accurate Forward Modeling of Gravity Data Caused by Basement Relief

机译:改进的3D Cauchy型集成量以更快,更准确地进行地下室浮雕引起的重力数据

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a new approach to improve the 3D Cauchy-type integral is presented for faster and more accurate forward modeling of gravity data produced by a sediment-basement interface. The conventional method for calculating the gravity effect of a sedimentary basin is to discretize that into right-rectangular prisms. Its associated volumetric integral over the prisms has computational complexity which makes volumetric integral time-demanding for 3D modeling. A 3D Cauchy-type integral only discretizes the density contrast surface. In fact, it is a surface integral without transcendental functions, which enables fast computation of potential fields. The purpose of the technique is to increase the accuracy of the customary Cauchy-type integral in order to calculate the gravity field over a sedimentary structure which is more likely in real geological structures. To achieve this, the vertical planes located between basement edges and the horizontal reference plane are considered. The accuracy and computational cost is assessed by synthetic gravity data modeling. Three forward functions, namely improved Cauchy-type integral, customary Cauchy-type integral, and volumetric integral, are applied to calculate the gravity field over synthetic sedimentary basins with different geometries. The volumetric integral is set as a benchmark to validate the efficiency of the presented method. Results are analyzed by comparing the dissimilarities of gravity anomalies calculated using the volumetric integral and each of the customary and improved Cauchy-type integrals. The resulting anomaly differences indicate that, compared with the customary Cauchy-type integral, the improved Cauchy-type integral increases the accuracy in calculated gravity anomalies considerably. Furthermore, forward calculations using the improved Cauchy-type integral require approximately the same time as the customary Cauchy-type integral, and are about 50 times faster than the volumetric integral. In addition, the improved Cauchy-type integral gives better results if the edges of the basement are not at an equal level, which is very likely in real geological structures. The new approach is tested on the basement of the Yucca Flat basin to assess the viability of the proposed model in real cases.
机译:在这项研究中,提出了一种改进三维柯西积分的新方法,以便对沉积物-基底界面产生的重力数据进行更快、更精确的正演模拟。计算沉积盆地重力效应的传统方法是将其离散成直角棱镜。其在棱镜上的相关体积积分具有计算复杂性,这使得三维建模需要体积积分时间。三维柯西型积分仅离散密度对比表面。实际上,它是一个没有超越函数的曲面积分,可以快速计算势场。该技术的目的是提高常规柯西积分的精度,以便计算沉积构造上的重力场,而沉积构造更可能出现在实际地质构造中。为了实现这一点,需要考虑位于地下室边缘和水平基准面之间的垂直面。通过合成重力数据建模评估了精度和计算成本。应用改进的柯西型积分、常规柯西型积分和体积积分三种正演函数,计算了不同几何形状合成沉积盆地的重力场。以体积积分为基准,验证了该方法的有效性。通过比较使用体积积分计算的重力异常与常用的和改进的柯西型积分计算的重力异常的不同,对结果进行了分析。由此产生的异常差异表明,与传统的柯西型积分相比,改进的柯西型积分大大提高了重力异常计算的精度。此外,使用改进的Cauchy型积分进行正演计算所需的时间与常规Cauchy型积分大致相同,并且比体积积分快50倍左右。此外,如果基底边缘不在同一水平面上,改进的柯西型积分会给出更好的结果,这在实际地质结构中很可能是如此。新方法在尤卡平原盆地的基底上进行了测试,以评估所提出模型在实际案例中的可行性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号