首页> 外文期刊>Organic Geochemistry: A Publication of the International Association of Geochemistry and Cosmochemistry >Biotic and abiotic degradation of the sea ice diatom biomarker IP25 and selected algal sterols in near-surface Arctic sediments
【24h】

Biotic and abiotic degradation of the sea ice diatom biomarker IP25 and selected algal sterols in near-surface Arctic sediments

机译:海冰硅藻生物标志物IP25的生物和非生物降解,近表面北极沉积物中的选定藻类甾醇

获取原文
获取原文并翻译 | 示例
           

摘要

The organic geochemical IP25 (Ice Proxy with 25 carbon atoms) has been used as a proxy for Arctic sea ice in recent years. To date, however, the role of degradation of IP25 in Arctic marine sediments and the impact that this may have on palaeo sea ice reconstruction based on this biomarker have not been investigated in any detail. Here, we show that IP25 may be susceptible to autoxidation in near-surface oxic sediments. To arrive at these conclusions, we first subjected a purified sample of IP25 to autoxidation in the laboratory and characterised the oxidation products using high resolution gas chromatography-mass spectrometric methods. Most of these IP25 oxidation products were also detected in near-surface sediments collected from Barrow Strait in the Canadian Arctic, although their proposed secondary oxidation and the relatively lower abundances of IP25 in other sediments probably explain why we were not able to detect them in material from other parts of the region. A rapid decrease in IP25 concentration in some near-surface Arctic marine sediments, including examples presented here, may potentially be attributed to at least partial degradation, especially for sediment cores containing relatively thick oxic layers representing decades or centuries of deposition. An increase in the ratio of two common phytoplanktonic sterols - epi-brassicasterol and 24-methylenecholesterol - provides further evidence for such autoxidation reactions given the known enhanced reactivity of the latter to such processes reported previously. In addition, we provide some evidence that biodegradation processes also act on IP25 in Arctic sediments. The oxidation products identified in the present study will need to be quantified more precisely in downcore records in the future before the effects of degradation processes on IP25-based palaeo sea ice reconstruction can be fully understood. In the meantime, a brief overview of some previous investigations of IP25 in relatively shallow Arctic
机译:None

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号