...
首页> 外文期刊>Nano Energy >High-performance semitransparent polymer solar cells floating on water: Rational analysis of power generation, water evaporation and algal growth
【24h】

High-performance semitransparent polymer solar cells floating on water: Rational analysis of power generation, water evaporation and algal growth

机译:漂浮在水面上的高性能半透明聚合物太阳能电池:发电,水蒸发和藻类生长的合理分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Compared to conventional ground-mounted photovoltaic (PV) cells, floating photovoltaic (FPV) cells open new opportunities for scaling-up solar power generation, especially in highly populated countries that may have competing uses for the available land. Large-scale FPV projects normally deploy old-fashioned crystalline silicon panels that are brittle and difficult to integrate. Polymer solar cells (PSCs) are regarded as a newer and more versatile concept that make quite a splash today. High absorption coefficients, thin active layers and tunable absorption spectra through a synergy of molecular and device engineering promote extensive research on the integration of semitransparent polymer solar cells (ST-PSCs) with smart architecture to deliver both practical and aesthetic benefits. In this work, we propose a new concept of extending ST-PSCs to the field of FPV cells and explore the potential of regulating aquatic environments and organisms. Three groups of high-performance STPSCs are fabricated. Maximum efficiency of 13% and average visible transmittance over 20% deliver an optimum trade-off between power generation and transparency among the best-performing ST-PSCs. We develop new experimental approaches and propose a feasibility study on the water evaporation and algal growth by placing the large-area ST-PSCs on bodies of water. To the best of our knowledge, we demonstrate for the first time that the specific transmittance windows with controlled light intensities generated by the ST-PSCs are capable of regulating water evaporation and algal growth, which provides insight into responsible scale-up of FPVs instead of simply blocking the sunlight. The new functions of ST-PSCs pave an intriguing prospect of developing ST-PSCs for practical FPV applications in the near future.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号