...
首页> 外文期刊>Global change biology >Does economic optimisation explain LAI and leaf trait distributions across an Amazon soil moisture gradient?
【24h】

Does economic optimisation explain LAI and leaf trait distributions across an Amazon soil moisture gradient?

机译:经济优化是否解释了亚马逊土壤水分梯度的赖和叶状分布?

获取原文
获取原文并翻译 | 示例
           

摘要

Leaf area index (LAI) underpins terrestrial ecosystem functioning, yet our ability to predict LAI remains limited. Across Amazon forests, mean LAI, LAI seasonal dynamics and leaf traits vary with soil moisture stress. We hypothesise that LAI variation can be predicted via an optimality-based approach, using net canopy C export (NCE, photosynthesis minus the C cost of leaf growth and maintenance) as a fitness proxy. We applied a process-based terrestrial ecosystem model to seven plots across a moisture stress gradient with detailed in situ measurements, to determine nominal plant C budgets. For each plot, we then compared observations and simulations of the nominal (i.e. observed) C budget to simulations of alternative, experimental budgets. Experimental budgets were generated by forcing the model with synthetic LAI timeseries (across a range of mean LAI and LAI seasonality) and different leaf trait combinations (leaf mass per unit area, lifespan, photosynthetic capacity and respiration rate) operating along the leaf economic spectrum. Observed mean LAI and LAI seasonality across the soil moisture stress gradient maximised NCE, and were therefore consistent with optimality-based predictions. Yet, the predictive power of an optimality-based approach was limited due to the asymptotic response of simulated NCE to mean LAI and LAI seasonality. Leaf traits fundamentally shaped the C budget, determining simulated optimal LAI and total NCE. Long-lived leaves with lower maximum photosynthetic capacity maximised simulated NCE under aseasonal high mean LAI, with the reverse found for short-lived leaves and higher maximum photosynthetic capacity. The simulated leaf trait LAI trade-offs were consistent with observed distributions. We suggest that a range of LAI strategies could be equally economically viable at local level, though we note several ecological limitations to this interpretation (e.g. between-plant competition). In addition, we show how leaf trait trade-offs enable divergence in canopy strategies. Our results also allow an assessment of the usefulness of optimality-based approaches in simulating primary tropical forest functioning, evaluated against in situ data.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号