...
首页> 外文期刊>Global change biology >Low forest productivity associated with increasing drought-tolerant species is compensated by an increase in drought-tolerance richness
【24h】

Low forest productivity associated with increasing drought-tolerant species is compensated by an increase in drought-tolerance richness

机译:随着耐旱物种的增加,通过增加的耐旱性富裕增加,造成低森林生产率

获取原文
获取原文并翻译 | 示例
           

摘要

Many temperate forests are changing in composition due to a combination of changes in land-use, management and climate-related disturbances. Previous research has shown that in some regions these changes frequently favour drought-tolerant tree species. However, the effects of these changes in composition on forest functioning (e.g. productivity) are unclear. We studied 25 years of change in individual tree biomass growth, ingrowth and mortality, and community composition and total plot biomass across 2663 permanent forest plots in Catalonia (NE Spain) comprising 85,220 trees of 59 species. We focused on the relationship between community-level forest productivity and drought tolerance (DT), which was estimated using hydraulic traits as well as biogeographic indicators. We found that there was a small increase (1.6%-3.2% on average) in community-mean DT (DTcwm) during the study period, concurrent with a strong increase (12.4%-19.4% on average) in DT richness (DTric; i.e. trait range). Most importantly, we found that the mean DT was negatively related to forest productivity, which was explained because drought-tolerant tree species have lower tree-level growth. In contrast, DT richness was strongly and positively related to forest productivity, probably because it allowed for a more stable production along wet and dry periods. These results suggest a negative impact of ongoing climate change on forest productivity mediated by functional composition shifts (i.e. selection of drought-tolerant species), and a positive effect of increased DT richness as a consequence of land-use legacies. Such a trend towards functional diversification, although temporary, would increase forests' capacity to resist drought and place them in a better position to face the expected change in climate.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号