...
首页> 外文期刊>International Journal of Multiphase Flow >Experimental investigations of upward-inclined stratified oil-water flows using simultaneous two-line planar laser-induced fluorescence and particle velocimetry
【24h】

Experimental investigations of upward-inclined stratified oil-water flows using simultaneous two-line planar laser-induced fluorescence and particle velocimetry

机译:使用同时双线平面激光诱导荧光和粒子速度的向上倾斜分层油水流量的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Experiments are performed in low-inclination (<= 5 degrees) upward stratified oil (Exxsol D140) and water flows. The flows are investigated using a novel two-line laser-based diagnostic measurement technique that combines planar laser-induced fluorescence and particle image/tracking velocimetry to obtain two-dimensional (2-D) space- and time-resolved phase and velocity information. The technique enables direct measurements in the non-refractive-index-matched fluids of interest, as opposed to substitute fluids which are matched optically but whose properties may be less representative of those in real field applications. Flow conditions span in situ Reynolds numbers in the range 1300-3630 in the oil phase and 1810-11540 in the water phase, and water cuts of 10% and 20%. Instantaneous velocity vector-fields reveal the presence of complex flow structures in the water phase at low mixture velocities, which become less coherent with increasing pipe inclinations. These structures contribute to the generation of interfacial waves, increase the unsteadiness of the flow and the rate of momentum transfer to the oil phase. Statistical information on the interface heights, mean axial and wall-normal velocity profiles and fluctuations, Reynolds stresses, and mixing lengths is obtained from the analysis of the spatiotemporally resolved phase and velocity data. The normalised mean and rms velocity characteristics (velocity fluctuations and Reynolds stress) are shown to be weakly-dependent on the pipe inclination as the mixture velocity increases. Finally, predictions from a linear mixing-length model agree reasonably well with measurements for the water layer and near-interface regions. (C) 2020 Elsevier Ltd. All rights reserved.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号