...
首页> 外文期刊>Biomaterials Science >Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect
【24h】

Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect

机译:胍和季铵聚合物与独特抗微生物机制的组合实现协同抗微生物作用

获取原文
获取原文并翻译 | 示例
           

摘要

The increasing emergence and spread of antimicrobial resistance are urgent and important global challenges today. The clinical pipeline is lacking in innovative drugs that avoid the development of drug resistance. Macromolecular antimicrobials kill bacteria and fungi through physical disruptions to the cell membrane, which is difficult for microbes to overcome. Recently, we reported antimicrobial polycarbonates that kill microbes via two different mechanisms. Polycarbonates functionalized with quaternary ammonium disrupted the lipid bilayer membrane of the microbes, while polycarbonates functionalized with guanidinium translocated the membrane and precipitated cytosolic components. We hypothesized that the combination of these two distinct mechanisms would result in a more than additive increase in antimicrobial efficacy. Block and random copolymers containing both cationic groups had similar minimum inhibitory concentrations (MICs) as the guanidinium homopolymer on 5 representatives of the ESKAPE pathogens. Interestingly, the random copolymer killed P. aeruginosa and A. baumannii more rapidly than the block copolymer and the guanidinium homopolymer with the same number of guanidinium groups. Like quaternary ammonium homopolymer, the copolymers killed the bacteria via a membrane-disruptive mechanism. Then, we simply mixed quaternary ammonium homopolymer and guanidinium homopolymer, and studied antimicrobial activity of the combination at various concentrations. Checkerboard assay results showed that the combination of the polymers, in general, achieved a synergistic or additive effect in inhibiting the growth of bacteria. At concentrations where it exibited a synergistic or additive effect in inhibiting bacterial growth, the combination killed the bacteria effectively (99%-99.9% killing efficiency) although the individual polymers at these concentrations did not exert bactericidal activity. Therefore, it is essential to have the two functional groups on separate molecules to provide synergism. This study provides a basic understanding of polymer design with different cationic groups.
机译:抗微生物抗性的越来越多的出现和蔓延是今天的迫切和重要的全球挑战。临床管道缺乏创新药物,避免了耐药性的发展。大分子抗菌剂通过对细胞膜的物理破坏来杀死细菌和真菌,这对于微生物来说是难以克服的。最近,我们报道了通过两种不同机制杀死微生物的抗微生物聚碳酸酯。用季铵官能化的聚碳酯破坏了微生物的脂质双层膜,而用胍钙官能化的聚碳酸酯转移膜和沉淀的细胞溶质组分。我们假设这两个不同机制的组合将导致抗微生物效能的增加增加。含有阳离子基团的嵌段和随机共聚物在eSkape病原体的5个代表上具有类似的最小抑制浓度(MIC)作为胍啶均聚物。有趣的是,随机共聚物杀死了P.铜绿假单胞菌和A.Baumannii比嵌段共聚物和胍酰胆鎓含有相同数量的胍基团。与季铵均聚物一样,共聚物通过膜破坏机制杀死细菌。然后,我们简单地混合季铵均聚物和胍均聚物,并在各种浓度下研究了组合的抗微生物活性。棋盘测定结果表明,聚合物的组合,一般来说,抑制细菌生长的协同或添加剂效果。在其抑制细菌生长的协同或添加剂效果的浓度下,这些组合有效地杀死了细菌(杀伤效率99%-99.9%),尽管这些浓度的个体聚合物没有施加杀菌活性。因此,必须在单独的分子上具有两个官能团以提供协同作用。本研究提供了具有不同阳离子组的聚合物设计的基本理解。

著录项

  • 来源
    《Biomaterials Science》 |2020年第24期|共10页
  • 作者单位

    Institute of Bioengineering and Nanotechnology 31 Biopolis Way Singapore 138669 Singapore;

    Institute of Bioengineering and Nanotechnology 31 Biopolis Way Singapore 138669 Singapore;

    Institute of Bioengineering and Nanotechnology 31 Biopolis Way Singapore 138669 Singapore;

    Institute of Bioengineering and Nanotechnology 31 Biopolis Way Singapore 138669 Singapore;

    Institute of Bioengineering and Nanotechnology 31 Biopolis Way Singapore 138669 Singapore;

    IBM Almaden Research Center 650 Harry Road San Jose CA 95120 USA;

    Institute of Bioengineering and Nanotechnology 31 Biopolis Way Singapore 138669 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号